基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测

TP273; 在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义.针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测方法.这种方法通过高斯随机过程、核函数以及贝叶斯理论进行锚杆支护时间序列煤岩压力预测,是一种对非线性问题适应性高、具有概率意义输出的机器学习方法.以巷道掘进过程中钻箱钻进1 000 mm时的钻进压力试验数据作为最优核函数和历史点数的筛选样本,以10种核函数(E、SE、RQ、Matern3/2、Matern5/2、ARDE、ARDSE、ARD...

Full description

Saved in:
Bibliographic Details
Published in煤炭学报 Vol. 49; no. z1; pp. 92 - 107
Main Author 刘杰
Format Journal Article
LanguageChinese
Published 煤矿采掘机械装备国家工程实验室,山西太原 030006 01.08.2024
山西天地煤机装备有限公司,山西太原 030006
中国煤炭科工集团太原研究院有限公司,山西太原 030006
Subjects
Online AccessGet full text
ISSN0253-9993
DOI10.13225/j.cnki.jccs.2023.0542

Cover

Abstract TP273; 在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义.针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测方法.这种方法通过高斯随机过程、核函数以及贝叶斯理论进行锚杆支护时间序列煤岩压力预测,是一种对非线性问题适应性高、具有概率意义输出的机器学习方法.以巷道掘进过程中钻箱钻进1 000 mm时的钻进压力试验数据作为最优核函数和历史点数的筛选样本,以10种核函数(E、SE、RQ、Matern3/2、Matern5/2、ARDE、ARDSE、ARDRQ、ARDMatern3/2、ARDMatern5/2)和 7 种历史点数(8、10、12、14、16、18、20)作为筛选对象,通过负对数边缘似然函数为极小化目标函数自适应获取最优超参数,以单步外推的方式和训练集、测试集7:3的比例对筛选样本进行了70次数值解算.分别以测试集可决系数(R2)、测试集均方根误差(RMSE)、测试集平均绝对误差(MAE)为数值解算评价指标,获取了 4种锚杆支护钻进压力预测策略的最优核函数和最优历时点数组合(Matern5/2+历时点数10、ARDMatern5/2+历史点数10、SE+历时点数18、RQ+历史点数18).基于最小化计算量,选取最优核函数为Matern5/2、最优历史点数为10,再次分别对巷道掘进过程中钻箱钻进1 200、2400、3 000 mm的钻进压力试验数据进行数值解算,给出95%置信区间下锚杆支护钻进压力预测分布.所提出的方法对于钻箱钻进1 200 mm的钻进压力的预测数据,R2为0.613 17,MAE为0.026 957,区间平均宽度百分比为3.072%;所提出的方法对于钻箱钻进2400 mm的钻进压力的预测数据,R2为0.931 18,MAE为0.010 895,区间平均宽度百分比为0.581%;所提出的方法对于钻箱钻进3 000 mm的钻进压力的预测数据,R2为0.996 47,MAE为0.009 184 7,区间平均宽度百分比为0.614%.最终发现,不同核函数和历史点数的组合选择会有较大差距的预测效果,是不可忽略的两个重要因素,本研究方法对围岩硬度分布均匀的数据波段预测结果优秀,对围岩硬度突变的数据波段预测结果在可接受范围内.
AbstractList TP273; 在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义.针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不适用等问题,提出了一种基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测方法.这种方法通过高斯随机过程、核函数以及贝叶斯理论进行锚杆支护时间序列煤岩压力预测,是一种对非线性问题适应性高、具有概率意义输出的机器学习方法.以巷道掘进过程中钻箱钻进1 000 mm时的钻进压力试验数据作为最优核函数和历史点数的筛选样本,以10种核函数(E、SE、RQ、Matern3/2、Matern5/2、ARDE、ARDSE、ARDRQ、ARDMatern3/2、ARDMatern5/2)和 7 种历史点数(8、10、12、14、16、18、20)作为筛选对象,通过负对数边缘似然函数为极小化目标函数自适应获取最优超参数,以单步外推的方式和训练集、测试集7:3的比例对筛选样本进行了70次数值解算.分别以测试集可决系数(R2)、测试集均方根误差(RMSE)、测试集平均绝对误差(MAE)为数值解算评价指标,获取了 4种锚杆支护钻进压力预测策略的最优核函数和最优历时点数组合(Matern5/2+历时点数10、ARDMatern5/2+历史点数10、SE+历时点数18、RQ+历史点数18).基于最小化计算量,选取最优核函数为Matern5/2、最优历史点数为10,再次分别对巷道掘进过程中钻箱钻进1 200、2400、3 000 mm的钻进压力试验数据进行数值解算,给出95%置信区间下锚杆支护钻进压力预测分布.所提出的方法对于钻箱钻进1 200 mm的钻进压力的预测数据,R2为0.613 17,MAE为0.026 957,区间平均宽度百分比为3.072%;所提出的方法对于钻箱钻进2400 mm的钻进压力的预测数据,R2为0.931 18,MAE为0.010 895,区间平均宽度百分比为0.581%;所提出的方法对于钻箱钻进3 000 mm的钻进压力的预测数据,R2为0.996 47,MAE为0.009 184 7,区间平均宽度百分比为0.614%.最终发现,不同核函数和历史点数的组合选择会有较大差距的预测效果,是不可忽略的两个重要因素,本研究方法对围岩硬度分布均匀的数据波段预测结果优秀,对围岩硬度突变的数据波段预测结果在可接受范围内.
Abstract_FL Timely understanding of surrounding rock pressure bolting is crucial to enhance the service life of drilling rigs and ensure coal mine production safety.However,delayed feedback of drilling pressure,nonlinear distribution of coal and rock hardness,and inapplicability of existing methods in bolt support are common problems.To address these issues,a pre-diction method of drilling pressure in bolt support is proposed based on the optimal kernel function and historical points of Gaussian process time series regression.This is a machine learning method that is highly adaptabile to nonlinear problems and provides probabilistic output.It utilizes Gaussian stochastic process,kernel function,and Bayesian theory to predict the sequence coal rock pressure during bolt support.The optimal kernel function and historical points for the proposed pre-diction method were selected based on drilling pressure test data obtained during roadway excavation where the drill box was drilled 1 000 mm.The parameters included 10 types of kernel functions(E,SE,RQ,Maten3/2,Maten5/2,ARDE,AR-DSE,ARDRQ,ARDMatern3/2,ARDMatern5/2)and 7 different historical points(8,10,12,14,16,18,20).The optimal hyperparameter were adaptively determined through the negative logarithmic edge likelihood function as the minimiza-tion objective function.A total of 70 numerical calculations were performed using a single-step extrapolation method with a 7:3 ratio for the training and testing sets on the selected samples.Based on the evaluation indicators,such as determinab-ility coefficient(R2),root mean square error(RMSE),and the average absolute error(MAE)of the test set,the optimal ker-nel function and optimal combination of duration points for four bolt support drilling pressure prediction strategies were identified.The optimal combination includes Matern5/2 with historical points 10,ARDMatern5/2 with historical points 10,SE with historical points 18,and RQ with historical points 18.The optimal kernel function was selected as Matern5/2 and the optimal number of historical points was chosen as 10,considering the minimization of computational complexity.Drilling pressure test data obtained from drilling the drill box at 1 200 mm,2 400 mm and 3 000 mm during the tunnel ex-cavation process were used for numerical calculations The predicted distribution of the drilling pressure supported by the anchor rod was given with a 95%confidence interval.The proposed method achieved an R2 of 0.613 17 and an MAE of 0.026 957 for drilling pressure during drilling with a 1 200 mm drill box,with an average width percentage of the interval of 3.072%.For the drilling pressure of 2 400 mm drill box,the proposed method achieved an R2 of 0.931 18 and an MAE of 0.010 895,with an average width percentage of the interval of 0.581%.For the drilling pressure of 3 000 mm drill box,the proposed method achieved an R2 of 0.996 47 and an MAE of 0.009 184 7,with an average width percentage of the in-terval of 0.614%.The final conclusion found that the combination of different kernel functions and historical points has a significant difference in prediction performance,which is two important factors that cannot be ignored.The prediction res-ults were excellent for the data bands with a uniform hardness distribution of the surrounding rock and acceptable for the data bands with abrupt hardness changes.
Author 刘杰
AuthorAffiliation 中国煤炭科工集团太原研究院有限公司,山西太原 030006;山西天地煤机装备有限公司,山西太原 030006;煤矿采掘机械装备国家工程实验室,山西太原 030006
AuthorAffiliation_xml – name: 中国煤炭科工集团太原研究院有限公司,山西太原 030006;山西天地煤机装备有限公司,山西太原 030006;煤矿采掘机械装备国家工程实验室,山西太原 030006
Author_FL LIU Jie
Author_FL_xml – sequence: 1
  fullname: LIU Jie
Author_xml – sequence: 1
  fullname: 刘杰
BookMark eNotkE1LAkEAhudgkFp_oVvH3eZrt9ljSF8gdKmz7MzuRlut0BZFpwjR0FAQa0X7IjoEHYyoKEv8M87o_ouMOr08l-eBNwUSQT5wAZhBUEcEY2PO10WwvaX7QoQ6hpjo0KA4AZIQG0SzLItMglQY-hASSkwjCYS87Q661fipqS47o35p-FhR0XscvcpuTZ5Fsn0je3V1dTL4bqq7D1nqqYtnWT-X1aKsvQxPP8c4bBXiRktdF1Wjo8oPcf1r1G_LakWW2_F9Qb1VpsCEZ--E7vT_psHG0uJ6ZkXLri2vZhayWoggtDTOKEeCExMxA1q2SanJDIfNewbnnCEHE8Yp5NQRApqeQ1yEXcFsx4bMtggUJA1m_7yHduDZwWbOzx_sBeNibnf_iI_foMe_IfIDNeZ9iA
ClassificationCodes TP273
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13225/j.cnki.jccs.2023.0542
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Prediction of drilling pressure in bolting based on gaussian process time series regression optimal kernel function and historical points
EndPage 107
ExternalDocumentID mtxb2024z1009
GrantInformation_xml – fundername: 中国煤炭科工集团重点资助项目
  funderid: (2022-2-TD-ZD015)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
FIJ
GROUPED_DOAJ
IPNFZ
PSX
RIG
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1009-b84b1cb3618509a644685d87f5bbb81d238b40b4dcc06fd3e12ec8ada08a930c3
ISSN 0253-9993
IngestDate Thu May 29 04:05:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue z1
Keywords 高斯过程回归
历时点数
锚杆支护
Gaussian process regression
bolting
核函数
confidence interval
kernel function
prediction of drilling pressure
置信区间
钻进压力预测
historical points
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1009-b84b1cb3618509a644685d87f5bbb81d238b40b4dcc06fd3e12ec8ada08a930c3
PageCount 16
ParticipantIDs wanfang_journals_mtxb2024z1009
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 煤炭学报
PublicationTitle_FL Journal of China Coal Society
PublicationYear 2024
Publisher 煤矿采掘机械装备国家工程实验室,山西太原 030006
山西天地煤机装备有限公司,山西太原 030006
中国煤炭科工集团太原研究院有限公司,山西太原 030006
Publisher_xml – name: 煤矿采掘机械装备国家工程实验室,山西太原 030006
– name: 山西天地煤机装备有限公司,山西太原 030006
– name: 中国煤炭科工集团太原研究院有限公司,山西太原 030006
SSID ssj0034365
ssib048394982
ssib023167597
ssib012291397
ssib051374103
ssib001105247
ssib046784615
Score 2.4769158
Snippet TP273; 在井下锚杆支护过程中,及时了解工作压力对提高钻机使用寿命、保障煤矿生产安全具有重要的意义.针对目前锚杆支护中钻进压力反馈滞后、煤岩硬度分布非线性、现有方法不...
SourceID wanfang
SourceType Aggregation Database
StartPage 92
Title 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测
URI https://d.wanfangdata.com.cn/periodical/mtxb2024z1009
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0253-9993
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0034365
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFA61bnQhPvFZunBWcmvuzGQyWSa3CUXQVQvdlUwevuAK2m7uSqS00koLpdrS-kJcCIIVUdFq6Z9p0t5_4TmT3HtTLPiAMExmzjlz5pzJzDdhHoZxOUxtgK2JqCUJUzUe2mlNpjFMVpTN4lSZsaPvT7l-Q4yM8Wvj1njfoQ-VVUtTk2ooah24r-R_vApp4FfcJfsPnu0KhQSIg38hBA9D-Fc-Jr5FnIB4LvE5htInvkNcjziS-II4grgB8SXxAgJzft8mriTS01k28QQSY4SjHGQPMCIlJqJkkOPrrGHiUM3VwIURWFajLMI1iSc1l41kSAP0pmanRDZ0lk-k0BFQlaIakhLPqRDbxIHSudaHYxyzhjWXwBSshSDSJW5BA-xeWS9QsiyiiLg6BYxAtUBBPEj0qhBcK2BpUVoTdxgZIXRFpxSr0ww79pClRp5Z_UtCeXeNXtGu94lGxwSoCpgGrS9Qy1JSQ_tMoJZYf0lchoy-5pUd63uFZr52FVgK_GdVvKiznMLlbmlrSAEJVMe9Oj4o3NKaaOFAWdjLCa5Az2uaojIUUIvVAMqz6rhVHPVafp-temUUKm4XLPFMeavwb0Ml9uR6rIyad28P3YkiPLyesiHA8LQHDrpLNqHxKzRsq673yx6mMIqalV8YGn4DWKe96WmdUjx0tvtO8dQFq_cOYzSg3x4c5QDWudM7a8mqM8C7ZhdZMc701bBda5Q7_rEmVw-sh96J10zD5s0KaBw9bhwrZ3uDbvHpnjD6WrdOGkcrZ4CeMqLs1ebO5kL7_Wr-bGNve3b33Xy-8rW98jnbXMwer2TrL7Otpfz5w52fq_nrb9nsVv70Y7b0JFuYyRY_7T76Dq-7a9Pt5bX8xUy-vJHPvW0v_djbXs8W5rO59fab6fzL_GljLPBHGyO18uaT2gM0b01JruqRYgLQtOmEMGcR0oqlnVpKKZhhAs5W3FQ8jiJTpDFL6jSJZBiHpgwdZkbsjNHfvNdMzhqD1HaSlJqR4lHC7ZAqGUHvbIUsSpiQUp4zBkoTTZQ924OJfb4-_yeCC8aR3hd30eifvD-VXAKkPqkGdPP4BcCAvOA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%AB%98%E6%96%AF%E8%BF%87%E7%A8%8B%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%9B%9E%E5%BD%92%E6%9C%80%E4%BC%98%E6%A0%B8%E5%87%BD%E6%95%B0%E5%92%8C%E5%8E%86%E5%8F%B2%E7%82%B9%E6%95%B0%E7%9A%84%E9%94%9A%E6%9D%86%E6%94%AF%E6%8A%A4%E9%92%BB%E8%BF%9B%E5%8E%8B%E5%8A%9B%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%85%A4%E7%82%AD%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E6%9D%B0&rft.date=2024-08-01&rft.pub=%E7%85%A4%E7%9F%BF%E9%87%87%E6%8E%98%E6%9C%BA%E6%A2%B0%E8%A3%85%E5%A4%87%E5%9B%BD%E5%AE%B6%E5%B7%A5%E7%A8%8B%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%B1%B1%E8%A5%BF%E5%A4%AA%E5%8E%9F+030006&rft.issn=0253-9993&rft.volume=49&rft.issue=z1&rft.spage=92&rft.epage=107&rft_id=info:doi/10.13225%2Fj.cnki.jccs.2023.0542&rft.externalDocID=mtxb2024z1009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtxb%2Fmtxb.jpg