面向不平衡数据集的浓香型白酒基酒等级分类研究
TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究.该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型.结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用...
Saved in:
Published in | 中国酿造 Vol. 43; no. 1; pp. 184 - 189 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000
25.01.2024
四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-5071 |
DOI | 10.11882/j.issn.0254-5071.2024.01.029 |
Cover
Abstract | TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究.该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型.结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用. |
---|---|
AbstractList | TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究.该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型.结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用. |
Abstract_FL | In order to solve the problem of unbalanced samples which causing a decrease in the performance of classification models of base liquor of strong-flavor(Nongxiangxing)Baijiu collected by gas chromatography-mass spectrometry(GC-MS),a classification study of strong-flavor Baijiu base liquor for unbalanced data sets was proposed.In the method,a few class samples of strong-flavor Baijiu base liquor were expanded by using the syn-thetic minority over sampling technique(SMOTE)to improve the unbalanced of samples.Then the dimensions of GC-MS data were reduced by using sparse principal component analysis(SPCA).Finally,the classification and recognition model of strong-flavor Baijiu base liquor was established by using deep forest(DF)classifier.The results showed that the model classification accuracy rate could be effectively improved after using SMOTE algorithm to balance the base liquor data set,the accuracy of the established classification model for strong-flavor Baijiu base liquor reached 96.61%,and the establishment of the classification model could play a certain guidance and reference role for grade classification of base liquor. |
Author | 李兆飞 杨壮 王继华 张贵宇 赵娜 |
AuthorAffiliation | 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000;四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000 |
AuthorAffiliation_xml | – name: 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000;四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000 |
Author_FL | LI Zhaofei ZHAO Na WANG Jihua YANG Zhuang ZHANG Guiyu |
Author_FL_xml | – sequence: 1 fullname: WANG Jihua – sequence: 2 fullname: LI Zhaofei – sequence: 3 fullname: YANG Zhuang – sequence: 4 fullname: ZHAO Na – sequence: 5 fullname: ZHANG Guiyu |
Author_xml | – sequence: 1 fullname: 王继华 – sequence: 2 fullname: 李兆飞 – sequence: 3 fullname: 杨壮 – sequence: 4 fullname: 赵娜 – sequence: 5 fullname: 张贵宇 |
BookMark | eNrjYmDJy89LZWBQNTTQMzS0sDDSz9LLLC7O0zMwMjXRNTUwN9QzMjAy0TMwBIpYsjBwwsU5GLiKi7MMDIwtzcwNOBmcXs5d9HTCxCc7ep_u3Pxi4cJnUzc86133cnbb81ktz7ZOfrls5tN53c9n7n3ZOunp_F1A8vnazue7lj_taHu-cffzBVOer9zGw8CalphTnMoLpbkZQt1cQ5w9dH383T2dHX10iw0NDCx1jY0sLcyMEg2NzExNUlKT00ySklItDIySLYwsUy2SDEzNEoHMZBODlEQLc7MU09RU4xQTQ0sjs1RLw1RjS0sDY24GVYi55Yl5aYl56fFZ-aVFeUAb46vS86pA3jUwBHrWGAApK2X4 |
ClassificationCodes | TS261.1 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11882/j.issn.0254-5071.2024.01.029 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Research on grade classification of strong-flavor Baijiu base liquor based on unbalanced data sets |
EndPage | 189 |
ExternalDocumentID | zgnz202401029 |
GrantInformation_xml | – fundername: (四川省自贡市科技局重点科技计划项目); (四川轻化工大学科研基金项目); (四川轻化工大学研究生创新基金项目); (四川轻化工大学研究生课程建设项目) funderid: (四川省自贡市科技局重点科技计划项目); (四川轻化工大学科研基金项目); (四川轻化工大学研究生创新基金项目); (四川轻化工大学研究生课程建设项目) |
GroupedDBID | -02 2B. 4A8 5XA 5XC 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5L |
ID | FETCH-LOGICAL-s1009-329862a12654decf4bbe802c829e8b056ac82c40da876d5ee3d41926e91e39903 |
ISSN | 0254-5071 |
IngestDate | Thu May 29 04:05:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | 稀疏主成分分析 气相色谱-质谱联用 gas chromatography-mass spectrometry 基酒分类 合成少数类过采样技术 strong-flavor Baijiu base liquor synthetic minority over-sampling technique 浓香型白酒基酒 base liquor classification sparse principal component analysis |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1009-329862a12654decf4bbe802c829e8b056ac82c40da876d5ee3d41926e91e39903 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_zgnz202401029 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-25 |
PublicationDateYYYYMMDD | 2024-01-25 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | 中国酿造 |
PublicationTitle_FL | China Brewing |
PublicationYear | 2024 |
Publisher | 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000 |
Publisher_xml | – name: 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000 – name: 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000 |
SSID | ssj0039670 ssib002263015 ssib001104799 ssib051369242 |
Score | 2.3747158 |
Snippet | TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 184 |
Title | 面向不平衡数据集的浓香型白酒基酒等级分类研究 |
URI | https://d.wanfangdata.com.cn/periodical/zgnz202401029 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0254-5071 databaseCode: DOA dateStart: 20240101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0039670 providerName: Directory of Open Access Journals |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcNUWCcEB8RTPqgfmVLnYu_Z697hOHFVIcGql3ionccopSG16yRkqEKrE81AQj3IAcQCBEAiK-A5-gNTkL5hZO4lLK16StVrNjGdmZ-zsjLM7y9h5jBiSxGtJR7QS6WD-RTUgU-XQ-VZp6NebwlZiunRZzs77FxeChbHxb6VVS6ud-kyju-e-kv_xKsLQr7RL9h88O2SKAOyjf7FFD2P7Vz6GWIOuguEQB6Bd0B7EPkQKVJUgkYZIQKzAeHTFEjQCXeoggYnt7REoCXEI2oDyCRUhK0Eog_Taco5BRZYGGVYJpRCYC61BZEqQEEwVlKYOwk1INEoVIiIPIsvHoKq-7SBDWY6PC_2N1R91G4qLarbj4r2DZ4QYqIFqyLiQhvLjEYkkAyEVYQKrBw5M4JB-ITGKSBBjShhFxsCLMAp0pfyJhNOyGiffTm0f6kJjvMj0ITElBlU7ZhRdAS0LlMlZ-oXKOFojp-3QjTXnkMh6gCBoQmGNsVsGthXMB6x5Qut5bDk5n1jH5D0asyENcggK5pW9WOX0A7IonsYw1nXd0mSBib5DsX15ZssLYO14g_NpysuP5SsiHi8_xGn3ZIrZl51NScLMUMIMmTivdatHUcRwbWd3qd0lCipWqMfZPh5KyUvfOmycTgVCynkwl6IUlwaekJr7wzpwQssw_1haqLCfwUDBC79Tz-7Ea7eS9lIpaJw7zA4V2d6UyV_dI2yse-UoO1iqAXqMRf3Hz3u373z_tN77_P7H5ub2g7fb62_6j9ayh9e2P9zrv9joPbmVbXztX7_be7qFbfb6Zrb1sndjLXv3JXt2P3v18Tibr8VzlVmnONjEWfHoz0jBtZI88bgM_GbaaPn1eqpc3lBcpwqHLxPsNny3mWCs0gzSVDRpsYZMtZdiQuGKE2yifbWdnmRTSSBDhCWpS4XEdKJ85butxHMVMU3EKTZZWGCx-OFaWdzhodN_IjjDDozeqbNsorO8mp7DQLxTn7RO_Qlv7aOs |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E4%B8%8D%E5%B9%B3%E8%A1%A1%E6%95%B0%E6%8D%AE%E9%9B%86%E7%9A%84%E6%B5%93%E9%A6%99%E5%9E%8B%E7%99%BD%E9%85%92%E5%9F%BA%E9%85%92%E7%AD%89%E7%BA%A7%E5%88%86%E7%B1%BB%E7%A0%94%E7%A9%B6&rft.jtitle=%E4%B8%AD%E5%9B%BD%E9%85%BF%E9%80%A0&rft.au=%E7%8E%8B%E7%BB%A7%E5%8D%8E&rft.au=%E6%9D%8E%E5%85%86%E9%A3%9E&rft.au=%E6%9D%A8%E5%A3%AE&rft.au=%E8%B5%B5%E5%A8%9C&rft.date=2024-01-25&rft.pub=%E5%9B%9B%E5%B7%9D%E8%BD%BB%E5%8C%96%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%9B%9B%E5%B7%9D%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%9B%9B%E5%B7%9D%E5%AE%9C%E5%AE%BE+644000&rft.issn=0254-5071&rft.volume=43&rft.issue=1&rft.spage=184&rft.epage=189&rft_id=info:doi/10.11882%2Fj.issn.0254-5071.2024.01.029&rft.externalDocID=zgnz202401029 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgnz%2Fzgnz.jpg |