面向不平衡数据集的浓香型白酒基酒等级分类研究

TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究.该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型.结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用...

Full description

Saved in:
Bibliographic Details
Published in中国酿造 Vol. 43; no. 1; pp. 184 - 189
Main Authors 王继华, 李兆飞, 杨壮, 赵娜, 张贵宇
Format Journal Article
LanguageChinese
Published 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000 25.01.2024
四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
Subjects
Online AccessGet full text
ISSN0254-5071
DOI10.11882/j.issn.0254-5071.2024.01.029

Cover

Abstract TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究.该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型.结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用.
AbstractList TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究.该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型.结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用.
Abstract_FL In order to solve the problem of unbalanced samples which causing a decrease in the performance of classification models of base liquor of strong-flavor(Nongxiangxing)Baijiu collected by gas chromatography-mass spectrometry(GC-MS),a classification study of strong-flavor Baijiu base liquor for unbalanced data sets was proposed.In the method,a few class samples of strong-flavor Baijiu base liquor were expanded by using the syn-thetic minority over sampling technique(SMOTE)to improve the unbalanced of samples.Then the dimensions of GC-MS data were reduced by using sparse principal component analysis(SPCA).Finally,the classification and recognition model of strong-flavor Baijiu base liquor was established by using deep forest(DF)classifier.The results showed that the model classification accuracy rate could be effectively improved after using SMOTE algorithm to balance the base liquor data set,the accuracy of the established classification model for strong-flavor Baijiu base liquor reached 96.61%,and the establishment of the classification model could play a certain guidance and reference role for grade classification of base liquor.
Author 李兆飞
杨壮
王继华
张贵宇
赵娜
AuthorAffiliation 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000;四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
AuthorAffiliation_xml – name: 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000;四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
Author_FL LI Zhaofei
ZHAO Na
WANG Jihua
YANG Zhuang
ZHANG Guiyu
Author_FL_xml – sequence: 1
  fullname: WANG Jihua
– sequence: 2
  fullname: LI Zhaofei
– sequence: 3
  fullname: YANG Zhuang
– sequence: 4
  fullname: ZHAO Na
– sequence: 5
  fullname: ZHANG Guiyu
Author_xml – sequence: 1
  fullname: 王继华
– sequence: 2
  fullname: 李兆飞
– sequence: 3
  fullname: 杨壮
– sequence: 4
  fullname: 赵娜
– sequence: 5
  fullname: 张贵宇
BookMark eNrjYmDJy89LZWBQNTTQMzS0sDDSz9LLLC7O0zMwMjXRNTUwN9QzMjAy0TMwBIpYsjBwwsU5GLiKi7MMDIwtzcwNOBmcXs5d9HTCxCc7ep_u3Pxi4cJnUzc86133cnbb81ktz7ZOfrls5tN53c9n7n3ZOunp_F1A8vnazue7lj_taHu-cffzBVOer9zGw8CalphTnMoLpbkZQt1cQ5w9dH383T2dHX10iw0NDCx1jY0sLcyMEg2NzExNUlKT00ySklItDIySLYwsUy2SDEzNEoHMZBODlEQLc7MU09RU4xQTQ0sjs1RLw1RjS0sDY24GVYi55Yl5aYl56fFZ-aVFeUAb46vS86pA3jUwBHrWGAApK2X4
ClassificationCodes TS261.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11882/j.issn.0254-5071.2024.01.029
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Research on grade classification of strong-flavor Baijiu base liquor based on unbalanced data sets
EndPage 189
ExternalDocumentID zgnz202401029
GrantInformation_xml – fundername: (四川省自贡市科技局重点科技计划项目); (四川轻化工大学科研基金项目); (四川轻化工大学研究生创新基金项目); (四川轻化工大学研究生课程建设项目)
  funderid: (四川省自贡市科技局重点科技计划项目); (四川轻化工大学科研基金项目); (四川轻化工大学研究生创新基金项目); (四川轻化工大学研究生课程建设项目)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1009-329862a12654decf4bbe802c829e8b056ac82c40da876d5ee3d41926e91e39903
ISSN 0254-5071
IngestDate Thu May 29 04:05:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 稀疏主成分分析
气相色谱-质谱联用
gas chromatography-mass spectrometry
基酒分类
合成少数类过采样技术
strong-flavor Baijiu base liquor
synthetic minority over-sampling technique
浓香型白酒基酒
base liquor classification
sparse principal component analysis
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1009-329862a12654decf4bbe802c829e8b056ac82c40da876d5ee3d41926e91e39903
PageCount 6
ParticipantIDs wanfang_journals_zgnz202401029
PublicationCentury 2000
PublicationDate 2024-01-25
PublicationDateYYYYMMDD 2024-01-25
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-25
  day: 25
PublicationDecade 2020
PublicationTitle 中国酿造
PublicationTitle_FL China Brewing
PublicationYear 2024
Publisher 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000
四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
Publisher_xml – name: 四川轻化工大学 自动化与信息工程学院,四川 宜宾 644000
– name: 四川轻化工大学 人工智能四川省重点实验室,四川宜宾 644000
SSID ssj0039670
ssib002263015
ssib001104799
ssib051369242
Score 2.3747158
Snippet TS261.1; 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类...
SourceID wanfang
SourceType Aggregation Database
StartPage 184
Title 面向不平衡数据集的浓香型白酒基酒等级分类研究
URI https://d.wanfangdata.com.cn/periodical/zgnz202401029
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0254-5071
  databaseCode: DOA
  dateStart: 20240101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0039670
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcNUWCcEB8RTPqgfmVLnYu_Z697hOHFVIcGql3ionccopSG16yRkqEKrE81AQj3IAcQCBEAiK-A5-gNTkL5hZO4lLK16StVrNjGdmZ-zsjLM7y9h5jBiSxGtJR7QS6WD-RTUgU-XQ-VZp6NebwlZiunRZzs77FxeChbHxb6VVS6ud-kyju-e-kv_xKsLQr7RL9h88O2SKAOyjf7FFD2P7Vz6GWIOuguEQB6Bd0B7EPkQKVJUgkYZIQKzAeHTFEjQCXeoggYnt7REoCXEI2oDyCRUhK0Eog_Taco5BRZYGGVYJpRCYC61BZEqQEEwVlKYOwk1INEoVIiIPIsvHoKq-7SBDWY6PC_2N1R91G4qLarbj4r2DZ4QYqIFqyLiQhvLjEYkkAyEVYQKrBw5M4JB-ITGKSBBjShhFxsCLMAp0pfyJhNOyGiffTm0f6kJjvMj0ITElBlU7ZhRdAS0LlMlZ-oXKOFojp-3QjTXnkMh6gCBoQmGNsVsGthXMB6x5Qut5bDk5n1jH5D0asyENcggK5pW9WOX0A7IonsYw1nXd0mSBib5DsX15ZssLYO14g_NpysuP5SsiHi8_xGn3ZIrZl51NScLMUMIMmTivdatHUcRwbWd3qd0lCipWqMfZPh5KyUvfOmycTgVCynkwl6IUlwaekJr7wzpwQssw_1haqLCfwUDBC79Tz-7Ea7eS9lIpaJw7zA4V2d6UyV_dI2yse-UoO1iqAXqMRf3Hz3u373z_tN77_P7H5ub2g7fb62_6j9ayh9e2P9zrv9joPbmVbXztX7_be7qFbfb6Zrb1sndjLXv3JXt2P3v18Tibr8VzlVmnONjEWfHoz0jBtZI88bgM_GbaaPn1eqpc3lBcpwqHLxPsNny3mWCs0gzSVDRpsYZMtZdiQuGKE2yifbWdnmRTSSBDhCWpS4XEdKJ85butxHMVMU3EKTZZWGCx-OFaWdzhodN_IjjDDozeqbNsorO8mp7DQLxTn7RO_Qlv7aOs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E4%B8%8D%E5%B9%B3%E8%A1%A1%E6%95%B0%E6%8D%AE%E9%9B%86%E7%9A%84%E6%B5%93%E9%A6%99%E5%9E%8B%E7%99%BD%E9%85%92%E5%9F%BA%E9%85%92%E7%AD%89%E7%BA%A7%E5%88%86%E7%B1%BB%E7%A0%94%E7%A9%B6&rft.jtitle=%E4%B8%AD%E5%9B%BD%E9%85%BF%E9%80%A0&rft.au=%E7%8E%8B%E7%BB%A7%E5%8D%8E&rft.au=%E6%9D%8E%E5%85%86%E9%A3%9E&rft.au=%E6%9D%A8%E5%A3%AE&rft.au=%E8%B5%B5%E5%A8%9C&rft.date=2024-01-25&rft.pub=%E5%9B%9B%E5%B7%9D%E8%BD%BB%E5%8C%96%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%9B%9B%E5%B7%9D%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%9B%9B%E5%B7%9D%E5%AE%9C%E5%AE%BE+644000&rft.issn=0254-5071&rft.volume=43&rft.issue=1&rft.spage=184&rft.epage=189&rft_id=info:doi/10.11882%2Fj.issn.0254-5071.2024.01.029&rft.externalDocID=zgnz202401029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgnz%2Fzgnz.jpg