基于蒙特卡洛随机采样方法与牛顿-拉夫逊迭代方法的钻锚机器人机械臂逆运动学求解方法

TP242%TD353; 钻锚机器人机械臂逆运动学精确求解是实现煤矿巷道自动支护的关键,针对钻锚机器人机械臂这种非传统结构机械臂逆运动学求解方法存在精度低、实时性差和容易陷入局部最优难以收敛的难题,提出了一种融合蒙特卡洛随机采样方法和牛顿-拉夫逊迭代方法的非传统结构机械臂逆运动学求解方法.首先,根据钻锚机器人机械臂结构构建运动学模型,建立各个关节坐标系,利用坐标系转换关系实现机械臂正运动学求解;其次,基于蒙特卡洛随机采样方法计算机械臂运动空间,设定步长将运动空间轮廓外接立方体分割为若干个小立方体,构建小立方体内空间点的三维坐标和对应关节变量与小立方体的映射关系,根据给定的目标空间点对应的转换矩...

Full description

Saved in:
Bibliographic Details
Published in煤炭学报 Vol. 49; no. z1; pp. 446 - 456
Main Authors 雷孟宇, 张旭辉, 杨文娟, 万继成, 董征, 杜昱阳, 陈鑫, 黄梦瑶, 田琛辉
Format Journal Article
LanguageChinese
Published 西安科技大学机械工程学院,陕西西安 710054%西安科技大学机械工程学院,陕西西安 710054 01.08.2024
陕西省矿山机电装备智能检测与控制重点实验室,陕西西安 710054
Subjects
Online AccessGet full text
ISSN0253-9993
DOI10.13225/j.cnki.jccs.2023.1445

Cover

Abstract TP242%TD353; 钻锚机器人机械臂逆运动学精确求解是实现煤矿巷道自动支护的关键,针对钻锚机器人机械臂这种非传统结构机械臂逆运动学求解方法存在精度低、实时性差和容易陷入局部最优难以收敛的难题,提出了一种融合蒙特卡洛随机采样方法和牛顿-拉夫逊迭代方法的非传统结构机械臂逆运动学求解方法.首先,根据钻锚机器人机械臂结构构建运动学模型,建立各个关节坐标系,利用坐标系转换关系实现机械臂正运动学求解;其次,基于蒙特卡洛随机采样方法计算机械臂运动空间,设定步长将运动空间轮廓外接立方体分割为若干个小立方体,构建小立方体内空间点的三维坐标和对应关节变量与小立方体的映射关系,根据给定的目标空间点对应的转换矩阵,通过索引函数确定其对应的小立方体,计算立方体内与目标空间点误差最小的点,将它对应的关节变量值作为初始值;最后,引入牛顿-拉夫逊迭代方法,利用多元函数迭代公式确定各关节变量的变化量,循环往复实现非传统结构机械臂逆运动学的求解.仿真实验结果表明,与基于随机初始值的牛顿-拉夫逊迭代方法和粒子群优化算法相比,所提方法计算结果对应的平均角度误差分别降低了 64.98%和57.34%,平均耗时分别降低了 35.90%和22.33%,求解精度和时效性均有所改善,验证了所提融合蒙特卡洛随机采样方法与牛顿-拉夫逊迭代方法针对非传统结构机械臂逆运动学求解的可行性和有效性.
AbstractList TP242%TD353; 钻锚机器人机械臂逆运动学精确求解是实现煤矿巷道自动支护的关键,针对钻锚机器人机械臂这种非传统结构机械臂逆运动学求解方法存在精度低、实时性差和容易陷入局部最优难以收敛的难题,提出了一种融合蒙特卡洛随机采样方法和牛顿-拉夫逊迭代方法的非传统结构机械臂逆运动学求解方法.首先,根据钻锚机器人机械臂结构构建运动学模型,建立各个关节坐标系,利用坐标系转换关系实现机械臂正运动学求解;其次,基于蒙特卡洛随机采样方法计算机械臂运动空间,设定步长将运动空间轮廓外接立方体分割为若干个小立方体,构建小立方体内空间点的三维坐标和对应关节变量与小立方体的映射关系,根据给定的目标空间点对应的转换矩阵,通过索引函数确定其对应的小立方体,计算立方体内与目标空间点误差最小的点,将它对应的关节变量值作为初始值;最后,引入牛顿-拉夫逊迭代方法,利用多元函数迭代公式确定各关节变量的变化量,循环往复实现非传统结构机械臂逆运动学的求解.仿真实验结果表明,与基于随机初始值的牛顿-拉夫逊迭代方法和粒子群优化算法相比,所提方法计算结果对应的平均角度误差分别降低了 64.98%和57.34%,平均耗时分别降低了 35.90%和22.33%,求解精度和时效性均有所改善,验证了所提融合蒙特卡洛随机采样方法与牛顿-拉夫逊迭代方法针对非传统结构机械臂逆运动学求解的可行性和有效性.
Abstract_FL Accurate determination of the inverse kinematics for the drilling arm of a drilling and anchoring robot is crucial in achieving automatic support in coal mine roadways.Addressing issues such as poor accuracy,limited real-time per-formance,and susceptibility to local optima,this study presents a novel approach for solving the inverse kinematics prob-lem of an unconventional mechanical arm by combining Monte Carlo random sampling method and Newton iteration method.Initially,a kinematics model is established based on the structure of the drilling arm,and individual coordinate systems are defined for each joint to enable forward kinematics solutions.The Monte Carlo method is employed to de-termine the motion space of the drill boom.By subdividing the motion space into smaller cubes with a defined step size,a mapping relationship is established between the spatial coordinates of these cubes and the corresponding joint variable val-ues.Using the transformation matrix associated with a given target space point,an index function is employed to identify the relevant small cubes.The points within these cubes,which are closest to the target space point,are calculated,and their corresponding joint variable values are used as initial values.The Newton iteration method is then introduced,utilizing the iterative formula for multivariate functions to determine the variation of each joint variable.The inverse kinematics solu-tion for the unconventional manipulator is obtained through iterative cycles.The simulation results show that,compared with Newton-Raphson iterative method based on random initial values and the particle swarm optimization algorithm,the corresponding average angle error of the calculation results of this method is reduced by 64.98%and 57.34%,and the av-erage time consumption is reduced by 35.90%and 22.33%,respectively,thereby enhancing solution accuracy and real-time performance.The feasibility and effectiveness of the proposed Monte Carlo and Newton iteration method for solving the inverse kinematics problem in unconventional manipulators are verified.Overall,this research provides evidence sup-porting the practicality and efficiency of the proposed Monte Carlo random sampling method and Newton iteration meth-od for accurate inverse kinematics solutions in unconventional manipulators.
Author 杨文娟
陈鑫
万继成
黄梦瑶
田琛辉
雷孟宇
张旭辉
董征
杜昱阳
AuthorAffiliation 西安科技大学机械工程学院,陕西西安 710054%西安科技大学机械工程学院,陕西西安 710054;陕西省矿山机电装备智能检测与控制重点实验室,陕西西安 710054
AuthorAffiliation_xml – name: 西安科技大学机械工程学院,陕西西安 710054%西安科技大学机械工程学院,陕西西安 710054;陕西省矿山机电装备智能检测与控制重点实验室,陕西西安 710054
Author_FL DONG Zheng
TIAN Chenhui
CHEN Xin
HUANG Mengyao
ZHANG Xuhui
YANG Wenjuan
WAN Jicheng
LEI Mengyu
DU Yuyang
Author_FL_xml – sequence: 1
  fullname: LEI Mengyu
– sequence: 2
  fullname: ZHANG Xuhui
– sequence: 3
  fullname: YANG Wenjuan
– sequence: 4
  fullname: WAN Jicheng
– sequence: 5
  fullname: DONG Zheng
– sequence: 6
  fullname: DU Yuyang
– sequence: 7
  fullname: CHEN Xin
– sequence: 8
  fullname: HUANG Mengyao
– sequence: 9
  fullname: TIAN Chenhui
Author_xml – sequence: 1
  fullname: 雷孟宇
– sequence: 2
  fullname: 张旭辉
– sequence: 3
  fullname: 杨文娟
– sequence: 4
  fullname: 万继成
– sequence: 5
  fullname: 董征
– sequence: 6
  fullname: 杜昱阳
– sequence: 7
  fullname: 陈鑫
– sequence: 8
  fullname: 黄梦瑶
– sequence: 9
  fullname: 田琛辉
BookMark eNotkN9LwlAcxe-DQWr9C731uPW99-667TGkXyD0Us-yzbto1YTWL3oSiUQjC6lADcqKEkIoCsr54D-zze2_aKFP58Dhcw6cFErYRZsjNIdBxJQQtmCJhr2zLVqG4YgECBWxJLEESgJhVFBVlU6jlONYAFSiGZZER_6D67n1sNEcVfv-ZSf4bketq-DejSqV4PEnuOsHX7feb31UbUedoRBcVP2X96hUC4c9b_A8jkets6gxiG5aMeY3u57rxiZ4-ggr5ah0Hg6v_VrX770Gn-XwbYLMoClT23X47ETTaHN5aSO7KuTWV9ayiznBwQCKQApc4hnABCSuswIoBapxqmjMUIEqpgpKhmIwNEYMhcgUyyDrMte5aQCw_zCN5se9x5ptavZW3ioe7tvxYn7v4ESPD5JOcdxE_wC4TYqR
ClassificationCodes TP242%TD353
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13225/j.cnki.jccs.2023.1445
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL An integrated approach for inverse kinematics of unconventional manipulators using Monte Carlo random sampling method and Newton iterative method
EndPage 456
ExternalDocumentID mtxb2024z1038
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金); (陕煤联合基金资助项目)
  funderid: (国家自然科学基金); (国家自然科学基金); (陕煤联合基金资助项目)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
FIJ
GROUPED_DOAJ
IPNFZ
PSX
RIG
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1008-2de4e601204eb5d08d3ae38a5c9038f9086310ca52c82731707b7ebefc0050863
ISSN 0253-9993
IngestDate Thu May 29 04:05:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue z1
Keywords 运动学分析
workspace
joint variable
蒙特卡洛
Monte Carlo
运动空间
索引函数
牛顿-拉夫逊迭代
Newton iteration
kinematics analysis
index function
关节变量
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1008-2de4e601204eb5d08d3ae38a5c9038f9086310ca52c82731707b7ebefc0050863
PageCount 11
ParticipantIDs wanfang_journals_mtxb2024z1038
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 煤炭学报
PublicationTitle_FL Journal of China Coal Society
PublicationYear 2024
Publisher 西安科技大学机械工程学院,陕西西安 710054%西安科技大学机械工程学院,陕西西安 710054
陕西省矿山机电装备智能检测与控制重点实验室,陕西西安 710054
Publisher_xml – name: 西安科技大学机械工程学院,陕西西安 710054%西安科技大学机械工程学院,陕西西安 710054
– name: 陕西省矿山机电装备智能检测与控制重点实验室,陕西西安 710054
SSID ssj0034365
ssib048394982
ssib023167597
ssib012291397
ssib051374103
ssib001105247
ssib046784615
Score 2.4834087
Snippet TP242%TD353; 钻锚机器人机械臂逆运动学精确求解是实现煤矿巷道自动支护的关键,针对钻锚机器人机械臂这种非传统结构机械臂逆运动学求解方法存在精度低、实时性差和容易陷入...
SourceID wanfang
SourceType Aggregation Database
StartPage 446
Title 基于蒙特卡洛随机采样方法与牛顿-拉夫逊迭代方法的钻锚机器人机械臂逆运动学求解方法
URI https://d.wanfangdata.com.cn/periodical/mtxb2024z1038
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0253-9993
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0034365
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Na9RAFA-1XvQgfuJn6cE5SWoymUlmjkmbpQh6aqG3kk13_YIVtPWwp1LE0opVigptBa2KFqSgKGi3h_4fnnfT3f_C917STVoLfpyEJczOvHkf80tm3guZN4Zx0dWetuKKMGMeSVNEtmNGXhyZsfJUVMWkdxo3OF-95g6Piitjcqyn90fhq6WpyfJAXN93X8m_oAp1gCvukv0LZLtMoQLKgC9cAWG4_hHGLJRMl1jgs1DgVYUsVExzpjULPaY0CzTSqCHm2yx0WSCYDliomQbiEtboQequmfLwBzW-xQIqaJe6w9VhWpIIRSKIc8oH2AYlE4lUgLUgzBfMpzZlMeWjQkGJ-UPUP2C-sx9rjxQSpBlHMiwIrMxVlGiVrzJTg2ITKA29LJSFZvAd6W4mXVs0Cj51l6iM75J0m4gV8719FSt67mQ2WReSCLSowAqZy527l9QPaBiJBDDCQsjyVR8rgkEcbJTqETvQFUh0TgItQ6QzKaZSdgBwKSdJQfFQKRxdAk4BiVV8ncNF92PC9AEkmyUOTaYX3S_QW9uZMcrawdLbZefeEZdopU8QgmZwE-TEmgDj8BBnZUS6K3evApcwAZQUjMv_V7nCqsmlY0LU4xSX-DQrbjaV1e3Cgi2yF-Cp7yfSJPe_uBW46pFfEddu3xy4FceY6J87-GWEzB2p7uetMFGUEds6nj5wwDjIweOwCq97KFSBwIbnobzNOSbo7f7nmKFC5v_Bn4FIIXfdBQQ2Qud5qaTtQGxgdb1QRzh0jG53OLLsCGjJ5X3toF2LtWpUu15wsEeOGkeyyLjfT6e5Y0ZP_cZx43AhX-oJ437rVaPZWGgvLm3PbbQeryZfVzrLT5KXjc7sbPL6W_JiI_nyvPl9YXtupbO6ZSaP5lrvPnam59tb683Nt2nz9vKDzuJm59kydGstrTUbDSgkbz61Z2c60w_bW09b82ut9ffJ55n2h6zLSWO0FI4MDpvZwTHmPcxVZvKJiqi4mBZAVMpywlITTlRxVCRjDYBUtaVciGrjSPJYQfhme5ZX9mA1q8aYDgsaTxm9tTu1ymmjv6pcLy5XtVSwoDkuJm2plkVVCV7Go_68M0ZfNmrj2cJwb3wX_Gd_R3DOOJTPA-eN3sm7U5ULEOhMlvvojvkJJ9wKMA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%92%99%E7%89%B9%E5%8D%A1%E6%B4%9B%E9%9A%8F%E6%9C%BA%E9%87%87%E6%A0%B7%E6%96%B9%E6%B3%95%E4%B8%8E%E7%89%9B%E9%A1%BF-%E6%8B%89%E5%A4%AB%E9%80%8A%E8%BF%AD%E4%BB%A3%E6%96%B9%E6%B3%95%E7%9A%84%E9%92%BB%E9%94%9A%E6%9C%BA%E5%99%A8%E4%BA%BA%E6%9C%BA%E6%A2%B0%E8%87%82%E9%80%86%E8%BF%90%E5%8A%A8%E5%AD%A6%E6%B1%82%E8%A7%A3%E6%96%B9%E6%B3%95&rft.jtitle=%E7%85%A4%E7%82%AD%E5%AD%A6%E6%8A%A5&rft.au=%E9%9B%B7%E5%AD%9F%E5%AE%87&rft.au=%E5%BC%A0%E6%97%AD%E8%BE%89&rft.au=%E6%9D%A8%E6%96%87%E5%A8%9F&rft.au=%E4%B8%87%E7%BB%A7%E6%88%90&rft.date=2024-08-01&rft.pub=%E8%A5%BF%E5%AE%89%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89+710054%25%E8%A5%BF%E5%AE%89%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89+710054&rft.issn=0253-9993&rft.volume=49&rft.issue=z1&rft.spage=446&rft.epage=456&rft_id=info:doi/10.13225%2Fj.cnki.jccs.2023.1445&rft.externalDocID=mtxb2024z1038
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtxb%2Fmtxb.jpg