基于余弦相似度和图卷积网络的电力负荷预测方法
针对现有电力负荷预测模型难以深入提取时空关联特征,模型泛化能力弱,无法同时胜任短期和长期的电力负荷预测的问题,提出一种面向多用户的基于余弦相似度和全局-局部协同图卷积网络的电力负荷预测方法.首先,利用余弦相似度来学习不同节点负荷数据之间的相似模式,以提取深层次的时空关联特征.其次,对影响电力负荷变化趋势的静态全局因素和动态局部因素进行协同建模,以提升模型的泛化能力.最后,通过在一个实测数据集上进行的大量实验,验证了该方法在短期和长期负荷序列预测任务中同时具备有效性和稳定性....
        Saved in:
      
    
          | Published in | 浙江电力 Vol. 44; no. 1; pp. 68 - 75 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            杭州迈拓大数据服务有限公司,杭州 310007%国网浙江省电力有限公司科技创新中心,杭州 310007
    
        25.01.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1007-1881 | 
| DOI | 10.19585/j.zjdl.202501007 | 
Cover
| Abstract | 针对现有电力负荷预测模型难以深入提取时空关联特征,模型泛化能力弱,无法同时胜任短期和长期的电力负荷预测的问题,提出一种面向多用户的基于余弦相似度和全局-局部协同图卷积网络的电力负荷预测方法.首先,利用余弦相似度来学习不同节点负荷数据之间的相似模式,以提取深层次的时空关联特征.其次,对影响电力负荷变化趋势的静态全局因素和动态局部因素进行协同建模,以提升模型的泛化能力.最后,通过在一个实测数据集上进行的大量实验,验证了该方法在短期和长期负荷序列预测任务中同时具备有效性和稳定性. | 
    
|---|---|
| AbstractList | 针对现有电力负荷预测模型难以深入提取时空关联特征,模型泛化能力弱,无法同时胜任短期和长期的电力负荷预测的问题,提出一种面向多用户的基于余弦相似度和全局-局部协同图卷积网络的电力负荷预测方法.首先,利用余弦相似度来学习不同节点负荷数据之间的相似模式,以提取深层次的时空关联特征.其次,对影响电力负荷变化趋势的静态全局因素和动态局部因素进行协同建模,以提升模型的泛化能力.最后,通过在一个实测数据集上进行的大量实验,验证了该方法在短期和长期负荷序列预测任务中同时具备有效性和稳定性. | 
    
| Abstract_FL | To address the challenges of existing power load forecasting models,which struggle to deeply extract spa-tiotemporal correlation features and exhibit weak generalization capabilities—failing to simultaneously manage both short-term and long-term forecasting—this study proposes a multi-user power load forecasting method using cosine similarity and a global-local collaborative graph convolutional network.First,cosine similarity is utilized to learn similar patterns between load data from different nodes,allowing for the deep extraction of spatiotemporal correla-tion features.Second,a collaborative modeling approach is applied to static global factors and dynamic local factors that influence power load trends,enhancing the model's generalization ability.Finally,extensive experiments on a real-world dataset demonstrate the method's effectiveness and robustness in forecasting both short-term and long-term load series. | 
    
| Author | 景鑫 JI Shan 姜巍  | 
    
| AuthorAffiliation | 杭州迈拓大数据服务有限公司,杭州 310007%国网浙江省电力有限公司科技创新中心,杭州 310007 | 
    
| AuthorAffiliation_xml | – name: 杭州迈拓大数据服务有限公司,杭州 310007%国网浙江省电力有限公司科技创新中心,杭州 310007 | 
    
| Author_FL | JING Xin JI Shan JIANG Wei  | 
    
| Author_FL_xml | – sequence: 1 fullname: JI Shan – sequence: 2 fullname: JIANG Wei – sequence: 3 fullname: JING Xin  | 
    
| Author_xml | – sequence: 1 fullname: JI Shan – sequence: 2 fullname: 姜巍 – sequence: 3 fullname: 景鑫  | 
    
| BookMark | eNrjYmDJy89LZWCQNDTQM7Q0tTDVz9KrykrJ0TMyMDI1MDQwMGdh4ARRuoYWFoYcDLzFxZlJBgaGhkaWZqaWnAxOT-fverKr78nemU_3LHs-e8eTPXue7lr2dFLP09n7nvZuf758_fO9E5_vnvN8VsvzKVufds1-sWX-i97tLxe1PNva_Wzazmebp_IwsKYl5hSn8kJpboZQN9cQZw9dH393T2dHH91isP1JqUbJRikGaZamyYkWqcYWqQapxgaJycZJQHclmZoamZmbJZqmJlkkW5hZmiUZWJonJyWap6QZpSQZJyeZWZobczOoQswtT8xLS8xLj8_KLy3KA9oYD_Iw3L_GAHEaZm8 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.19585/j.zjdl.202501007 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| DocumentTitle_FL | A power load forecasting method using cosine similarity and a graph convolutional network | 
    
| EndPage | 75 | 
    
| ExternalDocumentID | zjdl202501007 | 
    
| GrantInformation_xml | – fundername: 国网浙江省电力有限公司科技项目 funderid: (B311JZ230003)  | 
    
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ  | 
    
| ID | FETCH-LOGICAL-s1007-be2c2d0f95ca8e38e0e30ac3b881b552676a5eb8c8696b097cba7df2db3cb6973 | 
    
| ISSN | 1007-1881 | 
    
| IngestDate | Thu May 29 03:55:40 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | graph convo-lutional 时空关联特征 multi-node power load forecasting 余弦相似度 多节点电力负荷预测 图卷积 spatiotemporal correlation features cosine similarity  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1007-be2c2d0f95ca8e38e0e30ac3b881b552676a5eb8c8696b097cba7df2db3cb6973 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | wanfang_journals_zjdl202501007 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-25 | 
    
| PublicationDateYYYYMMDD | 2025-01-25 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-25 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 浙江电力 | 
    
| PublicationTitle_FL | Zhejiang Electric Power | 
    
| PublicationYear | 2025 | 
    
| Publisher | 杭州迈拓大数据服务有限公司,杭州 310007%国网浙江省电力有限公司科技创新中心,杭州 310007 | 
    
| Publisher_xml | – name: 杭州迈拓大数据服务有限公司,杭州 310007%国网浙江省电力有限公司科技创新中心,杭州 310007 | 
    
| SSID | ssib001129659 ssib000269262 ssib051373757 ssib036436285 ssj0002912195  | 
    
| Score | 2.4102488 | 
    
| Snippet | 针对现有电力负荷预测模型难以深入提取时空关联特征,模型泛化能力弱,无法同时胜任短期和长期的电力负荷预测的问题,提出一种面向多用户的基于余弦相似度和全局-局部协同图... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 68 | 
    
| Title | 基于余弦相似度和图卷积网络的电力负荷预测方法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/zjdl202501007 | 
    
| Volume | 44 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1007-1881 databaseCode: DOA dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912195 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9RAtCJevBiNGj8JB-dkVtuZznTm2O52gyZ6goQbabtdjYc1keXCmZOKiUZNFBMSD3j0oARF8NdQFv-F771ply4QRZOmeTvvzfvo6-x70_lynBvdnKvE85KG1Fo1_ITjHpBZtxFw3N68kyuRY0fx3n01NePfnZWzY-MnarOWFvrprWzxyHUl_-NVKAO_4irZf_DskCkUAAz-hTt4GO7H8jGLJTNtFoUs9vGuYwJazBhERU0WKhYHzEQs0oRq4oWokFBQnTNNJUgTI6BbLAqwVghXGwFk6BEQMdMkhiDLJwB4SqoVIodYs8hHlQAo-RgWciJWSKkjBAzAhkoEs4dfVvlxSWYs1iNWB6UMJ_3cwe2mhy834kFlY-0LQP4-RiFHNMagJWFU_9bBcVphw66LpreTyFssbJWMTEx2tZnWiAITjCBhPspDYiBzCQW1YippImwVDr2qxJB8uFxCAQfSVbfRO7x5WO5NGhcJGJeVh1o1fxz5pECMd5RjjqGBdbnlDLW0pdFVdUVG-khZqghPRPxJ71rAw0_VnrbH5lQR0e7IOdLybXizJyCViZI98eZQCDbQAaUYvPiog2N7kGN7lcjRnc2RYIg_6ZziEJjd2lcROxCuRna0xO5B7YADAQk1LgKufktPBCIoB_IxGePGg5gsac5DaWk5twH1vH1QS1q61-smvQe1LHP6rHOm7B5Ohratn3PGFh-ed6JidXNn88XO9rtia22w8m1na6vYXCtePS9WfhbLG4NPnwfbLwc_PgzeLw1erxdPV_a-ru4tb_z6uLS7_mz37ffdL28uODPteLo51SjPPmnMk6JpzjPecbtGZonOhc7dXLhJJlIwIJWSq0AlMk91ppVRqWuCLE2CTpd3UpGlygTiojPee9zLLzmTvuhk0E_LAwNdBy0SI0SiJc-0kYlJEn3ZmShtniv_2-bnRlxz5W8EV53T-631mjPef7KQX4dcvZ9OkDd_A2Mpqj8 | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%BD%99%E5%BC%A6%E7%9B%B8%E4%BC%BC%E5%BA%A6%E5%92%8C%E5%9B%BE%E5%8D%B7%E7%A7%AF%E7%BD%91%E7%BB%9C%E7%9A%84%E7%94%B5%E5%8A%9B%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%99%E6%B1%9F%E7%94%B5%E5%8A%9B&rft.au=JI+Shan&rft.au=%E5%A7%9C%E5%B7%8D&rft.au=%E6%99%AF%E9%91%AB&rft.date=2025-01-25&rft.pub=%E6%9D%AD%E5%B7%9E%E8%BF%88%E6%8B%93%E5%A4%A7%E6%95%B0%E6%8D%AE%E6%9C%8D%E5%8A%A1%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%9D%AD%E5%B7%9E+310007%25%E5%9B%BD%E7%BD%91%E6%B5%99%E6%B1%9F%E7%9C%81%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E7%A7%91%E6%8A%80%E5%88%9B%E6%96%B0%E4%B8%AD%E5%BF%83%2C%E6%9D%AD%E5%B7%9E+310007&rft.issn=1007-1881&rft.volume=44&rft.issue=1&rft.spage=68&rft.epage=75&rft_id=info:doi/10.19585%2Fj.zjdl.202501007&rft.externalDocID=zjdl202501007 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdl%2Fzjdl.jpg |