基于深度学习的拟态裁决方法研究

TP393.08; 针对软硬件差异化容易导致拟态裁决结果不一致所造成的假阳现象被误认为网络攻击的问题,提出了一种基于深度学习的拟态裁决方法.通过构建无监督的自编码-解码深度学习模型,挖掘不同执行体输出多样化正常响应数据的深度语义特征,分析归纳其统计规律,并通过设计基于离线学习-在线裁决联动的训练机制和基于反馈优化机制来解决假阳现象,从而准确检测网络攻击,提高目标系统的安全弹性.鉴于软硬件差异导致正常响应数据间的统计规律已被深度学习模型理解掌握,因此不同执行体间拟态裁决结果将保持一致,即目标系统处于安全状态.一旦目标系统受到网络攻击,执行体的响应数据将偏离深度学习模型的统计规律,致使拟态裁决结果...

Full description

Saved in:
Bibliographic Details
Published in通信学报 Vol. 45; no. 2; pp. 79 - 89
Main Authors 杨晓晗, 程国振, 刘文彦, 张帅, 郝兵
Format Journal Article
LanguageChinese
Published 网络空间安全教育部重点实验室,河南 郑州 450000%嵩山实验室,河南 郑州 450046 25.02.2024
信息工程大学信息技术研究所,河南 郑州 450002%信息工程大学信息技术研究所,河南 郑州 450002
Subjects
Online AccessGet full text
ISSN1000-436X
DOI10.11959/j.issn.1000-436x.2024047

Cover

Abstract TP393.08; 针对软硬件差异化容易导致拟态裁决结果不一致所造成的假阳现象被误认为网络攻击的问题,提出了一种基于深度学习的拟态裁决方法.通过构建无监督的自编码-解码深度学习模型,挖掘不同执行体输出多样化正常响应数据的深度语义特征,分析归纳其统计规律,并通过设计基于离线学习-在线裁决联动的训练机制和基于反馈优化机制来解决假阳现象,从而准确检测网络攻击,提高目标系统的安全弹性.鉴于软硬件差异导致正常响应数据间的统计规律已被深度学习模型理解掌握,因此不同执行体间拟态裁决结果将保持一致,即目标系统处于安全状态.一旦目标系统受到网络攻击,执行体的响应数据将偏离深度学习模型的统计规律,致使拟态裁决结果不一致,即目标系统存在潜在安全威胁.实验结果表明,所提方法的检测性能显著优于主流的拟态裁决方法,且平均预测准确度提升了14.89%,有利于将该方法集成到真实应用的拟态化改造来增强系统的防护能力.
AbstractList TP393.08; 针对软硬件差异化容易导致拟态裁决结果不一致所造成的假阳现象被误认为网络攻击的问题,提出了一种基于深度学习的拟态裁决方法.通过构建无监督的自编码-解码深度学习模型,挖掘不同执行体输出多样化正常响应数据的深度语义特征,分析归纳其统计规律,并通过设计基于离线学习-在线裁决联动的训练机制和基于反馈优化机制来解决假阳现象,从而准确检测网络攻击,提高目标系统的安全弹性.鉴于软硬件差异导致正常响应数据间的统计规律已被深度学习模型理解掌握,因此不同执行体间拟态裁决结果将保持一致,即目标系统处于安全状态.一旦目标系统受到网络攻击,执行体的响应数据将偏离深度学习模型的统计规律,致使拟态裁决结果不一致,即目标系统存在潜在安全威胁.实验结果表明,所提方法的检测性能显著优于主流的拟态裁决方法,且平均预测准确度提升了14.89%,有利于将该方法集成到真实应用的拟态化改造来增强系统的防护能力.
Abstract_FL Due to software and hardware differentiation,the problem of false positives mistakenly identified as network attack behavior caused by inconsistent mimic decision results frequently occurs.Therefore,a mimic decision method based on deep learning was proposed.By constructing an unsupervised autoencoder-decoder deep learning model,the deep semantic features of diverse normal response data were explored from different executions and its statistical rules were analyzed and summarized.Additionally,the offline learning-online decision-making mechanism and the feedback optimization mechanism were designed to solve false positive problem,thereby accurately detecting network attacks and improving target system security resilience.Since statistical rules of normal response data was understood and mastered by deep learning model,the mimic decision results among different executions could remain consistent,indicating that the target system was in a secure state.However,once the target system was subjected to a network attacks,the response data outputted by the different executions was deviated from statistical distribution of deep learning model.Therefore,inconsistent mimic decision results were presented,indicating that the affected execution was under attack and the target system was exposed to potential security threats.The experiments show that the performance of the proposed method is significantly superior to the popular mimic decision methods,and the average prediction accuracy is improved by 14.89%,which is conducive to integrating the method into the mimic transformation of real application to enhance the system's defensive capability.
Author 程国振
郝兵
杨晓晗
张帅
刘文彦
AuthorAffiliation 信息工程大学信息技术研究所,河南 郑州 450002%信息工程大学信息技术研究所,河南 郑州 450002;网络空间安全教育部重点实验室,河南 郑州 450000%嵩山实验室,河南 郑州 450046
AuthorAffiliation_xml – name: 信息工程大学信息技术研究所,河南 郑州 450002%信息工程大学信息技术研究所,河南 郑州 450002;网络空间安全教育部重点实验室,河南 郑州 450000%嵩山实验室,河南 郑州 450046
Author_FL HAO Bing
LIU Wenyan
CHENG Guozhen
ZHANG Shuai
YANG Xiaohan
Author_FL_xml – sequence: 1
  fullname: YANG Xiaohan
– sequence: 2
  fullname: CHENG Guozhen
– sequence: 3
  fullname: LIU Wenyan
– sequence: 4
  fullname: ZHANG Shuai
– sequence: 5
  fullname: HAO Bing
Author_xml – sequence: 1
  fullname: 杨晓晗
– sequence: 2
  fullname: 程国振
– sequence: 3
  fullname: 刘文彦
– sequence: 4
  fullname: 张帅
– sequence: 5
  fullname: 郝兵
BookMark eNrjYmDJy89LZWBQNDTQMzS0NLXUz9LLLC7O0zM0MDDQNTE2q9AzMjAyMTAxZ2HghIlFcDDwFhdnJhmYGhqbmxkYG3Iy6D6dv-vJrr5n2zc-3bXs6dplT3YueD6r5Vn3_GcNjS8WNz5t2_xs2s5nm6c-XzDl-cptPAysaYk5xam8UJqbIdTNNcTZQ9fH393T2dFHtxholbmuqYGJhakF0EJjU4PUNLNU45Qkw5TEFDPTNMPEpKREo9Q0Y4MUoxQz45QU8zQTI-MkU2NDo9SUVIPktLRkU8MkY24GVYi55Yl5aYl56fFZ-aVFeUAb40sqKpLAHjMCWmQMANu0WKw
ClassificationCodes TP393.08
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11959/j.issn.1000-436x.2024047
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research on mimic decision method based on deep learning
EndPage 89
ExternalDocumentID txxb202402007
GroupedDBID -0Y
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CUBFJ
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1007-504858436350ef6e3db1dad65f1abba2ef30d2d63dd7f423b5312ede0cffc51b3
ISSN 1000-436X
IngestDate Thu May 29 04:00:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords active defense
deep learning
mimic defense
主动防御
深度学习
offline learning-online decision-making
mimic decision
拟态防御
离线训练-在线裁决
拟态裁决
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1007-504858436350ef6e3db1dad65f1abba2ef30d2d63dd7f423b5312ede0cffc51b3
PageCount 11
ParticipantIDs wanfang_journals_txxb202402007
PublicationCentury 2000
PublicationDate 2024-02-25
PublicationDateYYYYMMDD 2024-02-25
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-25
  day: 25
PublicationDecade 2020
PublicationTitle 通信学报
PublicationTitle_FL Journal on Communications
PublicationYear 2024
Publisher 网络空间安全教育部重点实验室,河南 郑州 450000%嵩山实验室,河南 郑州 450046
信息工程大学信息技术研究所,河南 郑州 450002%信息工程大学信息技术研究所,河南 郑州 450002
Publisher_xml – name: 信息工程大学信息技术研究所,河南 郑州 450002%信息工程大学信息技术研究所,河南 郑州 450002
– name: 网络空间安全教育部重点实验室,河南 郑州 450000%嵩山实验室,河南 郑州 450046
SSID ssib051376031
ssj0002912165
ssib058759023
ssib001102965
ssib023646527
ssib023168036
ssib036439991
ssib050281523
ssib000968473
Score 2.424314
Snippet TP393.08; 针对软硬件差异化容易导致拟态裁决结果不一致所造成的假阳现象被误认为网络攻击的问题,提出了一种基于深度学习的拟态裁决方法.通过构建无监督的自编码-解码深度...
SourceID wanfang
SourceType Aggregation Database
StartPage 79
Title 基于深度学习的拟态裁决方法研究
URI https://d.wanfangdata.com.cn/periodical/txxb202402007
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  issn: 1000-436X
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912165
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1000-436X
  databaseCode: M~E
  dateStart: 19800101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssib058759023
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9VAMNQK4kUUFT9LBfdUUpP9SuaYvOZRBD210FvJx0ZPT7CvUHqyIF4ET-rBSwtCwYMHKSh9_8F_0feeP8OZTfISpeIHXpbJzu7szE42M7vZ3XGcu74sPWOU54IMMleWunCBB9oNDC9NKEWap7QO-eChXl2X9zfUxtyZr51dS9vDbDnfPfVcyb9oFfNQr3RK9i80OyOKGQijfjFFDWP6RzpmiWLQZ3HEEklpmLBEszhgsU8ozIk0AdGKBbAMsMhjScAAC0sqHMZEgQAPnUqWhCwSFlAsRFKCUKCpYmIfQVF1JALSAsBi3XVwWQJ280TFUp9FfocBbAVZUo2SLW3EhBYABqIBgrZIQHjkkkSNWbxiqfRY1G-LIKshg7BmNQys7NRit0jcs6IjgORUd7GDS3t4XM1eT2oU64NvAeygXiNqROIBZkorVcJCsM2rRghF7GMnhpzF3PaFsCggtsIVokMoqKtDQqgoIomqnEjiS2_7mtveV1QLgqWaFlSKRQUmS5KiTHiMK5uliEEC_Fr7_4N8vW5bGS26HUAKGxFyZtWqSzrr0cs7JqqK3dM4O3C6GQUF1o4S_eWG_s4yqcSrbkj96Zby4c5OZrHV3Q5ncbxzr7PCUc-W0RfqHuP2OLQ_2TnFUEOHqn3WUis-844FOc_QXu2k0DVG73NGT_m0wav9qa1wKg51SCzrmHHwuW-Dy8567Jxzp5H33q-ktcf5BmU6eNTxPNcuOhfqKeNiVI3_S87c7uPLjjveH52MXk2-fBqPDscfD0-OD6bvnk9e7k-e7X17vzd-cTR5ezw5ejM9eD398PmKs95P1nqrbh36xN2ibUuuQsOKUwOB0wHPlNqIIvOLtNCq9NMsS7kphVfwQouiCEqcEWVoSrkpjJeXZa78TFx15gdPBuaas4hf4iDNTaBlJqVXyFQVmJQ5iDwtcmmuOwu1eJv1p21r8wdt3vhdgZvO-Xas3nLmh0-3zW101YfZgn0BvgPnJqLN
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%8B%9F%E6%80%81%E8%A3%81%E5%86%B3%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E9%80%9A%E4%BF%A1%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E6%99%93%E6%99%97&rft.au=%E7%A8%8B%E5%9B%BD%E6%8C%AF&rft.au=%E5%88%98%E6%96%87%E5%BD%A6&rft.au=%E5%BC%A0%E5%B8%85&rft.date=2024-02-25&rft.pub=%E7%BD%91%E7%BB%9C%E7%A9%BA%E9%97%B4%E5%AE%89%E5%85%A8%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450000%25%E5%B5%A9%E5%B1%B1%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B2%B3%E5%8D%97+%E9%83%91%E5%B7%9E+450046&rft.issn=1000-436X&rft.volume=45&rft.issue=2&rft.spage=79&rft.epage=89&rft_id=info:doi/10.11959%2Fj.issn.1000-436x.2024047&rft.externalDocID=txxb202402007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftxxb%2Ftxxb.jpg