基于改进混合运动麻雀搜索算法的水电站ROV路径规划

TJ630.34%U666; 水下遥控机器人(ROV)路径规划是水电站水下巡检作业的关键.针对电站水库下复杂环境及现有路径规划算法存在规划时间长、算法稳定性差、易陷入局部最优及生成路径不平滑等问题,提出一种基于改进混合运动麻雀搜索算法的水电站ROV路径规划方法.首先,引入佳点集改进麻雀种群初始化方法,提高了种群多样性;其次,提出混合运动策略优化麻雀群体位置更新方式,提高了算法收敛精度及稳定性;然后,结合工程实际问题,考虑水库下水流速度大、强磁场、障碍物以及投入成本等因素,建立了包含时间成本、路径威胁、水流扰动和偏置函数的多元目标函数;最后,采用三次B样条插值得到最优光滑路径.仿真结果表明,相较...

Full description

Saved in:
Bibliographic Details
Published in水下无人系统学报 Vol. 32; no. 2; pp. 320 - 327
Main Authors 曾学文, 黄秀华, 陈敏, 周达, 张福林
Format Journal Article
LanguageChinese
Published 国家能源集团江西电力有限公司,江西南昌,330000%国家能源集团江西电力有限公司万安水力发电厂,江西吉安,343800%中国电力建设集团(广东)工程监测检测技术有限公司,广东广州,510000 2024
Subjects
Online AccessGet full text
ISSN2096-3920
DOI10.11993/j.issn.2096-3920.2023-0162

Cover

Abstract TJ630.34%U666; 水下遥控机器人(ROV)路径规划是水电站水下巡检作业的关键.针对电站水库下复杂环境及现有路径规划算法存在规划时间长、算法稳定性差、易陷入局部最优及生成路径不平滑等问题,提出一种基于改进混合运动麻雀搜索算法的水电站ROV路径规划方法.首先,引入佳点集改进麻雀种群初始化方法,提高了种群多样性;其次,提出混合运动策略优化麻雀群体位置更新方式,提高了算法收敛精度及稳定性;然后,结合工程实际问题,考虑水库下水流速度大、强磁场、障碍物以及投入成本等因素,建立了包含时间成本、路径威胁、水流扰动和偏置函数的多元目标函数;最后,采用三次B样条插值得到最优光滑路径.仿真结果表明,相较于其他路径规划算法,所提方法在计算精度、收敛速度和稳定性方面表现更好,适用于水电站水下巡检任务.
AbstractList TJ630.34%U666; 水下遥控机器人(ROV)路径规划是水电站水下巡检作业的关键.针对电站水库下复杂环境及现有路径规划算法存在规划时间长、算法稳定性差、易陷入局部最优及生成路径不平滑等问题,提出一种基于改进混合运动麻雀搜索算法的水电站ROV路径规划方法.首先,引入佳点集改进麻雀种群初始化方法,提高了种群多样性;其次,提出混合运动策略优化麻雀群体位置更新方式,提高了算法收敛精度及稳定性;然后,结合工程实际问题,考虑水库下水流速度大、强磁场、障碍物以及投入成本等因素,建立了包含时间成本、路径威胁、水流扰动和偏置函数的多元目标函数;最后,采用三次B样条插值得到最优光滑路径.仿真结果表明,相较于其他路径规划算法,所提方法在计算精度、收敛速度和稳定性方面表现更好,适用于水电站水下巡检任务.
Abstract_FL Path planning for underwater remotely operated vehicles(ROVs)is a prerequisite for underwater inspection operation of hydropower plants.The reservoir of hydropower plants has complex environments,and the existing path planning algorithms face the problems of long planning time,poor stability of algorithms,easy fall into the local optimum,and unsmooth path generation.In view of these issues,this paper put forward a ROV path planning method for hydropower plants based on the improved hybrid motion sparrow search algorithm.Firstly,the good point set was introduced to improve the sparrow population initialization method,which enhanced the population diversity;secondly,the hybrid motion strategy was proposed to optimize the sparrow population position updating method,increasing the algorithm's convergence accuracy and stability;then,the multivariate objective function,which contained time cost,path threat,current disturbance,and penalty function,was established by combining with the actual engineering problems and considering the factors of large flow velocity of reservoirs,strong magnetic field,obstacles,and cost;finally,the triple B-spline interpolation was used to obtain the optimal smooth path.The simulation results show that compared with other path planning algorithms,the proposed method performs better in terms of computational accuracy,convergence speed,and stability,and it is suitable for underwater inspection tasks of hydropower plants.
Author 曾学文
黄秀华
周达
张福林
陈敏
AuthorAffiliation 国家能源集团江西电力有限公司,江西南昌,330000%国家能源集团江西电力有限公司万安水力发电厂,江西吉安,343800%中国电力建设集团(广东)工程监测检测技术有限公司,广东广州,510000
AuthorAffiliation_xml – name: 国家能源集团江西电力有限公司,江西南昌,330000%国家能源集团江西电力有限公司万安水力发电厂,江西吉安,343800%中国电力建设集团(广东)工程监测检测技术有限公司,广东广州,510000
Author_FL CHEN Min
HUANG Xiuhua
ZENG Xuewen
ZHOU Da
ZHANG Fulin
Author_FL_xml – sequence: 1
  fullname: ZENG Xuewen
– sequence: 2
  fullname: HUANG Xiuhua
– sequence: 3
  fullname: CHEN Min
– sequence: 4
  fullname: ZHOU Da
– sequence: 5
  fullname: ZHANG Fulin
Author_xml – sequence: 1
  fullname: 曾学文
– sequence: 2
  fullname: 黄秀华
– sequence: 3
  fullname: 陈敏
– sequence: 4
  fullname: 周达
– sequence: 5
  fullname: 张福林
BookMark eNo9j01Lw0AYhPdQwVr7K8Rj6u67ySbvUUr9gEJB1GvZNFlpKCm4iHjz0EPxIEUqohUELwqCClaCEeyfMR_9FwYUTzMMwwzPEimF_dAnZIXRGmOIfC2odbUOa0BRGByBFg64QZmAEin_p4ukqnXXpYAOCJtjmTSSu_g7Pk_HH_lskkZRMhrms1Fy9jiPP-eT03R0m03vs-er9O0yuxmkr9Ns_J49Xe-09vPoJfka5A-DZHixTBaU7Gm_-qcVsrfR2K1vGc3W5nZ9vWloRqkwpC2lT9GyTXQd21WehQJs1QHJ0XMV-MpG38KOCUWrI0zPtBzFHAUgXLTQ5BWy-rt7LEMlw4N20D86DIvH9kkv0AWySaFg5j-ckmiO
ClassificationCodes TJ630.34%U666
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11993/j.issn.2096-3920.2023-0162
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL ROV Path Planning of Hydropower Plants Based on Improved Hybrid Motion Sparrow Search Algorithm
EndPage 327
ExternalDocumentID yljs202402016
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1006-a7aae095749b87bfd59627fc2a39dbf2ef79e59c42e09c64d458f18f226b95943
ISSN 2096-3920
IngestDate Thu May 29 03:59:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords remotely operated vehicle
水下遥控机器人
sparrow search algorithm
麻雀搜索算法
path planning
路径规划
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1006-a7aae095749b87bfd59627fc2a39dbf2ef79e59c42e09c64d458f18f226b95943
PageCount 8
ParticipantIDs wanfang_journals_yljs202402016
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 水下无人系统学报
PublicationTitle_FL Journal of Unmanned Undersea Systems
PublicationYear 2024
Publisher 国家能源集团江西电力有限公司,江西南昌,330000%国家能源集团江西电力有限公司万安水力发电厂,江西吉安,343800%中国电力建设集团(广东)工程监测检测技术有限公司,广东广州,510000
Publisher_xml – name: 国家能源集团江西电力有限公司,江西南昌,330000%国家能源集团江西电力有限公司万安水力发电厂,江西吉安,343800%中国电力建设集团(广东)工程监测检测技术有限公司,广东广州,510000
SSID ssib029826739
ssib041262115
ssib030453107
ssib036436268
ssib051373269
Score 2.3696117
Snippet TJ630.34%U666; 水下遥控机器人(ROV)路径规划是水电站水下巡检作业的关键.针对电站水库下复杂环境及现有路径规划算法存在规划时间长、算法稳定性差、易陷入局部最优及生成路...
SourceID wanfang
SourceType Aggregation Database
StartPage 320
Title 基于改进混合运动麻雀搜索算法的水电站ROV路径规划
URI https://d.wanfangdata.com.cn/periodical/yljs202402016
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-3920
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssib030453107
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3Na9RAFA-1BfEiioqfpaBz3JpMMpl5x2Q3SxFUkFZ6K8l2o4isYNuDPXnooXiQIhXRCoIXBUEFK6UV7D_jfvS_8L2X7CalW6xehCVMXn7zPmeSeW_zYVnX4nTexetQUomValQ8hcM4jl27kqZ2YkxTN5IGFfRv3vKnZrwbs2p2ZGy7dNfS0mIy2Vge-lzJv0QVaRhXekr2LyI7YIoEbGN8cYsRxu2RYiwiJaAuwkBEHm1NJCJfALZBREaEdQEhUUJNPwLbwpj-IZsoJhABUoC6hyE1sIuxmY8toCoi7OuJQFIjiARoZugKUEQBFOoxxSYYUVA6HwpCAXDn9l0Wh7t1EhdGjDci0NxQpE_2mbr-ErnEDVkZYdgElBvYuZlkryYdSGFNW2DmQU0EPoHJKNUfStw7JMllCCBKFxAgLoYNIM0y19TQoWUIAHvPJ9tNvTiCfnXYi4akhFG5kiKLGioDUZEaK4JAn3oYlyk-WUUhyQLg52DyOx5y2EL0mqLIFV7m-GUxxlAZyLXMQ4tSqtyokx9ldRgrNjMLKqAyVYS5Li0vhFT_WeE8_DqXTuDByBjwYTC6f58IBMtD7aU5AAVPtJc-h5DZyxKDWsnwg5orGio0BA37JBriAWkYBiyReaKxkoXSTMimRzayNXUh_X2Sko31wM1n4ICCovM5WeWJdMRwH9ChoLAmQLdCK_7vrVgQSBv8CuYzdnn1Uvw7MCgiZUsRN8c18z09fMEE_Da5ByxhciABW5Lus8xXSvvfSP_k4YMFmj-YaTr-MWtMUim0VM3CS7kEI31dvHCY7sdwS5UmFxMhXxaVDs-RvnSKzEQ5rsbEkooXA52OW1f7Gl8_XF9--LKVxq17pTxh-pR1Mk_wJ4LsbH3aGlm-f8aK2u92fu0876xv93Y3Oltb7bXV3u5a-9nHvZ0fextPO2tvu5vvu59fdb697L5Z6Xzd7K5_7356jWfP3taX9s-V3oeV9uqLs9ZMPZquTlXyD9hUFhyq1MY6jpuYw2oPEqOTdJ4_dZY2ZOzCfJLKZqqhqaDhSUQ1fG8er5WpY1JMiRNQ4LnnrNHWo1bzvDXRkNLxTRpjhmw8O01iSGJXpSkmeDrWbnLBGs_NnssvUAtz--J08U-AS9YJamfl5cvW6OLjpeYVTLgWk3EO7W8Ozwm1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E6%B7%B7%E5%90%88%E8%BF%90%E5%8A%A8%E9%BA%BB%E9%9B%80%E6%90%9C%E7%B4%A2%E7%AE%97%E6%B3%95%E7%9A%84%E6%B0%B4%E7%94%B5%E7%AB%99ROV%E8%B7%AF%E5%BE%84%E8%A7%84%E5%88%92&rft.jtitle=%E6%B0%B4%E4%B8%8B%E6%97%A0%E4%BA%BA%E7%B3%BB%E7%BB%9F%E5%AD%A6%E6%8A%A5&rft.au=%E6%9B%BE%E5%AD%A6%E6%96%87&rft.au=%E9%BB%84%E7%A7%80%E5%8D%8E&rft.au=%E9%99%88%E6%95%8F&rft.au=%E5%91%A8%E8%BE%BE&rft.date=2024&rft.pub=%E5%9B%BD%E5%AE%B6%E8%83%BD%E6%BA%90%E9%9B%86%E5%9B%A2%E6%B1%9F%E8%A5%BF%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E6%B1%9F%E8%A5%BF%E5%8D%97%E6%98%8C%2C330000%25%E5%9B%BD%E5%AE%B6%E8%83%BD%E6%BA%90%E9%9B%86%E5%9B%A2%E6%B1%9F%E8%A5%BF%E7%94%B5%E5%8A%9B%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E4%B8%87%E5%AE%89%E6%B0%B4%E5%8A%9B%E5%8F%91%E7%94%B5%E5%8E%82%2C%E6%B1%9F%E8%A5%BF%E5%90%89%E5%AE%89%2C343800%25%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%8A%9B%E5%BB%BA%E8%AE%BE%E9%9B%86%E5%9B%A2%28%E5%B9%BF%E4%B8%9C%29%E5%B7%A5%E7%A8%8B%E7%9B%91%E6%B5%8B%E6%A3%80%E6%B5%8B%E6%8A%80%E6%9C%AF%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%B9%BF%E4%B8%9C%E5%B9%BF%E5%B7%9E%2C510000&rft.issn=2096-3920&rft.volume=32&rft.issue=2&rft.spage=320&rft.epage=327&rft_id=info:doi/10.11993%2Fj.issn.2096-3920.2023-0162&rft.externalDocID=yljs202402016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyljs%2Fyljs.jpg