基于SBG_XGBoost的煤矿安全应急物资储备中心选址研究

TD77; 煤矿安全应急物资储备中心选址优化是推动煤矿安全应急体系建设的重要基础,为提高煤矿安全应急物资储备中心选址的准确度和合理性,提出利用人口因素、交通因素、经济因素和自然因素,建立融合多源空间数据的煤矿安全应急物资储备中心选址机器学习组合模型,提高煤矿安全应急物资储备中心选址的准确度和科学性.利用ArcGIS分别通过渔网划分、空间链接和投影等任务对多源空间数据进行处理,并利用SMOTEENN算法避免数据不均衡的负面影响,从而构建适用于机器学习模型分析的数据集.通过对不同机器学习算法、不同特征选择方法以及不同参数寻优方法进行比较分析,得出XGBoost机器学习算法、Boruta算法和遗传算...

Full description

Saved in:
Bibliographic Details
Published in煤炭学报 Vol. 49; no. 8; pp. 3535 - 3545
Main Authors 刘战豫, 张宇飞
Format Journal Article
LanguageChinese
Published 河南理工大学工商管理学院能源经济研究中心,河南焦作 454000 01.08.2024
太行发展研究院,河南焦作 454000%河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
Subjects
Online AccessGet full text
ISSN0253-9993
DOI10.13225/j.cnki.jccs.2024.0477

Cover

Abstract TD77; 煤矿安全应急物资储备中心选址优化是推动煤矿安全应急体系建设的重要基础,为提高煤矿安全应急物资储备中心选址的准确度和合理性,提出利用人口因素、交通因素、经济因素和自然因素,建立融合多源空间数据的煤矿安全应急物资储备中心选址机器学习组合模型,提高煤矿安全应急物资储备中心选址的准确度和科学性.利用ArcGIS分别通过渔网划分、空间链接和投影等任务对多源空间数据进行处理,并利用SMOTEENN算法避免数据不均衡的负面影响,从而构建适用于机器学习模型分析的数据集.通过对不同机器学习算法、不同特征选择方法以及不同参数寻优方法进行比较分析,得出XGBoost机器学习算法、Boruta算法和遗传算法在对煤矿安全应急物资储备中心选址分析中,相较于其他机器学习算法、特征选择方法和参数寻优方法其表现更为优异.故基于各自优势,得到煤矿安全应急物资储备中心选址的机器学习组合模型.最后引入SHAP分析方法,对不同特征影响程度、影响方向等进行分析,定量评估输入数据在决策中的贡献,增强模型可解释性.研究结果表明煤矿安全应急物资储备中心选址组合模型性能优异,准确率、精确率、召回率、F1和AUC分别为0.976、0.966、0.989、0.977、0.996,可为选址决策提供有力支持,模型可解释分析也能够为煤矿安全应急物资储备中心选址提供科学参考.
AbstractList TD77; 煤矿安全应急物资储备中心选址优化是推动煤矿安全应急体系建设的重要基础,为提高煤矿安全应急物资储备中心选址的准确度和合理性,提出利用人口因素、交通因素、经济因素和自然因素,建立融合多源空间数据的煤矿安全应急物资储备中心选址机器学习组合模型,提高煤矿安全应急物资储备中心选址的准确度和科学性.利用ArcGIS分别通过渔网划分、空间链接和投影等任务对多源空间数据进行处理,并利用SMOTEENN算法避免数据不均衡的负面影响,从而构建适用于机器学习模型分析的数据集.通过对不同机器学习算法、不同特征选择方法以及不同参数寻优方法进行比较分析,得出XGBoost机器学习算法、Boruta算法和遗传算法在对煤矿安全应急物资储备中心选址分析中,相较于其他机器学习算法、特征选择方法和参数寻优方法其表现更为优异.故基于各自优势,得到煤矿安全应急物资储备中心选址的机器学习组合模型.最后引入SHAP分析方法,对不同特征影响程度、影响方向等进行分析,定量评估输入数据在决策中的贡献,增强模型可解释性.研究结果表明煤矿安全应急物资储备中心选址组合模型性能优异,准确率、精确率、召回率、F1和AUC分别为0.976、0.966、0.989、0.977、0.996,可为选址决策提供有力支持,模型可解释分析也能够为煤矿安全应急物资储备中心选址提供科学参考.
Abstract_FL The site selection optimization of coal mine safety emergency reserve center is an important foundation for pro-moting the construction of coal mine safety emergency response system.In order to improve the accuracy and reasonable-ness of coal mine safety emergency reserve center site selection,it is proposed to establish a machine learning combina-tion model for coal mine safety emergency reserve center site selection,integrating multi-source spatial data by using demographic,transportation,economic and natural factors to improve the accuracy and scientificity of coal mine safety emergency reserve center site selection.The accuracy and scientificity of coal mine safety emergency reserve center site selection are improved.Firstly,the ArcGIS is used to process multi-source spatial data through tasks such as fishing net di-vision,spatial linking and projection respectively,and the SMOTEENN algorithm is utilized to avoid the negative impact of data imbalance,so as to construct the dataset applicable to the analysis of machine learning model.Secondly,by com-paring and analyzing different machine learning algorithms,different feature selection methods and different parameter optimization methods,it is concluded that the XGBoost machine learning algorithm,the Boruta algorithm and genetic al-gorithm have better performance than other machine learning algorithms,feature selection methods and parameter optim-ization methods in the site selection analysis of coal mine safety and emergency reserve center.Therefore,based on the ad-vantages of each algorithm,this paper obtains a combined machine learning model for coal mine safety emergency re-serve center site selection.Finally,the SHAP analysis is introduced to analyze the influence degree and direction of differ-ent features to quantitatively assess the contribution of input data in decision-making and enhance the interpretability of the model.The results show that the combined model of coal mine safety emergency reserve center siting has an excellent performance,with 0.976,0.966,0.989,0.977,0.996 in accuracy,precision,recall,F1 value and Auc,respectively,which can provide a powerful support for siting decision-making,and the model interpretable analysis can also provide a scientif-ic reference for coal mine safety emergency reserve center siting.
Author 张宇飞
刘战豫
AuthorAffiliation 河南理工大学工商管理学院能源经济研究中心,河南焦作 454000;太行发展研究院,河南焦作 454000%河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
AuthorAffiliation_xml – name: 河南理工大学工商管理学院能源经济研究中心,河南焦作 454000;太行发展研究院,河南焦作 454000%河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
Author_FL ZHANG Yufei
LIU Zhanyu
Author_FL_xml – sequence: 1
  fullname: LIU Zhanyu
– sequence: 2
  fullname: ZHANG Yufei
Author_xml – sequence: 1
  fullname: 刘战豫
– sequence: 2
  fullname: 张宇飞
BookMark eNotjz9Lw0AcQG-oYFv9Cm6Oib_7k0tutFWrUHBQwS3chUSMegFT0TFoi2Rx6iRIHSq0g26KZOmX6Xn6LVR0ett7vAaq6UzHCK1gcDElxFtL3UifHLtpFOUuAcJcYL5fQ3UgHnWEEHQRNfI8BaCMcq-ONsyomld3e61OeNhpZVnes_d9Oxjb0cy8lGYwMdXwo3iy5fTztW-uJ2Z8O39_NrObr6I0D4V9HNrp2xJaSORpHi__s4kOtjb329tOd7ez017vOjkG4A5VgmLGfOIBC5gvhB_jGICpgAjBhZASU-VjLIhkinBIJI8JCyjlTGHBFW2i1T_vpdSJ1Edhml2c659ieNa7Ur-7EADm9BvXqmDp
ClassificationCodes TD77
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13225/j.cnki.jccs.2024.0477
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Site selection of coal mine safety emergency material reserve center based on SBG XGBoost
EndPage 3545
ExternalDocumentID mtxb202408016
GrantInformation_xml – fundername: (河南省高等学校重点科研项目); (河南省专业学位研究生精品教学案例资助项目); (河南理工大学研究生质量工程项目)
  funderid: (河南省高等学校重点科研项目); (河南省专业学位研究生精品教学案例资助项目); (河南理工大学研究生质量工程项目)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
FIJ
GROUPED_DOAJ
IPNFZ
PSX
RIG
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1006-3b9314472504847997e1e004b8299699aa13b71192a4b260fa6e2483364b196b3
ISSN 0253-9993
IngestDate Thu May 29 04:05:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Keywords 煤矿安全
emergency material reserve center
机器学习
选址
特征选择
coal mine safety
site selection
machine learning
应急物资储备中心
feature selection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1006-3b9314472504847997e1e004b8299699aa13b71192a4b260fa6e2483364b196b3
PageCount 11
ParticipantIDs wanfang_journals_mtxb202408016
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 煤炭学报
PublicationTitle_FL Journal of China Coal Society
PublicationYear 2024
Publisher 河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
太行发展研究院,河南焦作 454000%河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
Publisher_xml – name: 河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
– name: 太行发展研究院,河南焦作 454000%河南理工大学工商管理学院能源经济研究中心,河南焦作 454000
SSID ssj0034365
ssib048394982
ssib023167597
ssib012291397
ssib051374103
ssib001105247
ssib046784615
Score 2.483416
Snippet TD77; 煤矿安全应急物资储备中心选址优化是推动煤矿安全应急体系建设的重要基础,为提高煤矿安全应急物资储备中心选址的准确度和合理性,提出利用人口因素、交通因素、经济因...
SourceID wanfang
SourceType Aggregation Database
StartPage 3535
Title 基于SBG_XGBoost的煤矿安全应急物资储备中心选址研究
URI https://d.wanfangdata.com.cn/periodical/mtxb202408016
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0253-9993
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0034365
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELaS0ECBeIpnlAJX6MKuH2u79N7tJUKChkRKF-3u7fGSLhJJmlQRJEJpqCIKJBSKICUFdCCUJn8my8G_YMa73PmUk3g0ltc7Ho9nbM_n1XpMyJ1uR5k0MmEjF1kOGxQYxqZgeSMvmOxy8E8djYeTHzyM5hfF_SW5NDH51vtraX0tm803xp4r-R-rQhnYFU_J_oNlB0yhAPJgX0jBwpD-lY1pIqlp09jSRGCqk0fx3PLSXLyCRzkSRQ2UCcxoSa3LIHkb69mEaoMZfKUxAwwM0ET484OVrpahFmg0jaXjAymriYGbVq5ZTW3LVW9TzWlisHrF2bQwD3xs4Dgr5BZHPh4ekQ2ZO1aQ2shJYkGS32PCta-p0e5NlQHRQmpjnyRuYnt1DxUKZDk1if95g4nBz3XVgESOMaMxd220qFFOV9CRyLFUTiFOTqs8Cb1XRjpihc3acKR6TWyoAVkYCg2KiluuUYtkQBzHVLddCfBJTittjKpZc7zYYClb0UNJ8y4GPwwCb8FnkjcAsHPfO1UBXetZqD1Xw2UV56WGLVxWYTlPuURcsZ1PzHvPn84-y3MMUs_EbCDq-3NGw43DIM-YC3wHm4FJcoaBtwy8TxUOZgMoZ8NtaMgYBpcdPDOMriCHz-CLAeUOYacAUC7MMKaSDDng2mCAoLjg7grYgT7qk_3Yk3tj--FO3PW6ae-xBw4XLpDz9a5uxlZT9CKZ2HhyiZzzYn1eJq1y7-jk6I03Qfvvtvrb-_294_LzTrl9UB7tft_82N85_PFlq3x5UO6_Pvn2qTx-9XNzp3y_2f-w2z_8eoUstpOF5nyjvsKksRritzqeGR4KoTBQIOBAY1QRFrCCZRpgYGRMmoY8UyFss1KRsSjoplHBQD88Ehn4xoxfJVO9lV5xjcx0Oh28fIKnQVaIjtIpYJxIhakMukVuOL9OpmsdLNdL1OryiDFv_IngJjk7nIG3yNTai_XiNkDutWza2f8X7SmcJw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ESBG_XGBoost%E7%9A%84%E7%85%A4%E7%9F%BF%E5%AE%89%E5%85%A8%E5%BA%94%E6%80%A5%E7%89%A9%E8%B5%84%E5%82%A8%E5%A4%87%E4%B8%AD%E5%BF%83%E9%80%89%E5%9D%80%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%85%A4%E7%82%AD%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E6%88%98%E8%B1%AB&rft.au=%E5%BC%A0%E5%AE%87%E9%A3%9E&rft.date=2024-08-01&rft.pub=%E6%B2%B3%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%95%86%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%E8%83%BD%E6%BA%90%E7%BB%8F%E6%B5%8E%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E6%B2%B3%E5%8D%97%E7%84%A6%E4%BD%9C+454000&rft.issn=0253-9993&rft.volume=49&rft.issue=8&rft.spage=3535&rft.epage=3545&rft_id=info:doi/10.13225%2Fj.cnki.jccs.2024.0477&rft.externalDocID=mtxb202408016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtxb%2Fmtxb.jpg