基于昇腾处理器的边端人体动作识别算法设计与实现
TP391; 针对现有的人体动作识别算法精度不足、计算量大、缺少在边端设备上的部署等问题,本文提出一种基于昇腾处理器的边端轻量化人体动作识别时空图卷积算法.通过设计隐性联系骨架连接方法并构建隐性邻接矩阵,结合自然骨架连接邻接矩阵,构造显隐性融合空间图卷积.在时间维度加入空间注意力机制,使模型关注不同帧间关节点位置空间特征,进一步设计时间图卷积,构建时空图卷积.此外设计网络中的Ascend-Enisum算子,进行张量融合运算,降低了计算复杂度,使模型轻量化.针对上述改进,在KTH数据集上进行实验验证,与经典单流算法ST-GCN相比,模型计算量减小了22.28%,Top-1精度达到84.17%,提...
Saved in:
Published in | 光电工程 Vol. 51; no. 6; pp. 中插5 - 72 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
浙江工业大学计算机科学与技术学院,浙江 杭州 310023
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1003-501X |
DOI | 10.12086/oee.2024.240072 |
Cover
Abstract | TP391; 针对现有的人体动作识别算法精度不足、计算量大、缺少在边端设备上的部署等问题,本文提出一种基于昇腾处理器的边端轻量化人体动作识别时空图卷积算法.通过设计隐性联系骨架连接方法并构建隐性邻接矩阵,结合自然骨架连接邻接矩阵,构造显隐性融合空间图卷积.在时间维度加入空间注意力机制,使模型关注不同帧间关节点位置空间特征,进一步设计时间图卷积,构建时空图卷积.此外设计网络中的Ascend-Enisum算子,进行张量融合运算,降低了计算复杂度,使模型轻量化.针对上述改进,在KTH数据集上进行实验验证,与经典单流算法ST-GCN相比,模型计算量减小了22.28%,Top-1精度达到84.17%,提升了5% .基于上述算法设计了昇腾AI人体动作识别系统,并在边端设备成功部署,可以进行实时人体动作识别. |
---|---|
AbstractList | TP391; 针对现有的人体动作识别算法精度不足、计算量大、缺少在边端设备上的部署等问题,本文提出一种基于昇腾处理器的边端轻量化人体动作识别时空图卷积算法.通过设计隐性联系骨架连接方法并构建隐性邻接矩阵,结合自然骨架连接邻接矩阵,构造显隐性融合空间图卷积.在时间维度加入空间注意力机制,使模型关注不同帧间关节点位置空间特征,进一步设计时间图卷积,构建时空图卷积.此外设计网络中的Ascend-Enisum算子,进行张量融合运算,降低了计算复杂度,使模型轻量化.针对上述改进,在KTH数据集上进行实验验证,与经典单流算法ST-GCN相比,模型计算量减小了22.28%,Top-1精度达到84.17%,提升了5% .基于上述算法设计了昇腾AI人体动作识别系统,并在边端设备成功部署,可以进行实时人体动作识别. |
Abstract_FL | Aiming at the problems of existing human action recognition algorithms such as insufficient accuracy,large amount of calculation,and lack of deployment on edge devices,this paper proposes an edge-side lightweight human action recognition spatial temporal graph convolutional algorithm based on the Ascend processor.By designing an implicit skeletal connection method and constructing an implicit adjacency matrix,combined with the natural skeletal connection adjacency matrix,we create an explicit-implicit fusion spatial graph convolution.A spatial attention mechanism is added to the temporal dimension,enabling the model to focus on spatial features of joint positions across different frames.Furthermore,we design a temporal graph convolution to construct a spatiotemporal graph convolution.Additionally,the Ascend-Enisum operator is designed within the network to perform tensor fusion operations,reducing computational complexity and lightening the model.Experimental validation on the KTH dataset demonstrates that,compared to the classical single-stream ST-GCN algorithm,our model achieves a 22.28% reduction in computational cost while attaining a Top-1 accuracy of 84.17%,representing a 5% improvement.Based on this algorithm,we have designed the Ascend AI human action recognition system,which has been successfully deployed on edge devices for real-time human action recognition. |
Author | 赵冬冬 陈朋 赖亮 李亦然 梁荣华 周鸿超 |
AuthorAffiliation | 浙江工业大学计算机科学与技术学院,浙江 杭州 310023 |
AuthorAffiliation_xml | – name: 浙江工业大学计算机科学与技术学院,浙江 杭州 310023 |
Author_FL | Zhao Dongdong Zhou Hongchao Liang Ronghua Lai Liang Chen Peng Li Yiran |
Author_FL_xml | – sequence: 1 fullname: Zhao Dongdong – sequence: 2 fullname: Lai Liang – sequence: 3 fullname: Chen Peng – sequence: 4 fullname: Zhou Hongchao – sequence: 5 fullname: Li Yiran – sequence: 6 fullname: Liang Ronghua |
Author_xml | – sequence: 1 fullname: 赵冬冬 – sequence: 2 fullname: 赖亮 – sequence: 3 fullname: 陈朋 – sequence: 4 fullname: 周鸿超 – sequence: 5 fullname: 李亦然 – sequence: 6 fullname: 梁荣华 |
BookMark | eNotj8tKw0AYhWdRwVq79wVcJv4zmUwmSyn1AgU3Cu7KpDMTFEnAIL5AreKiCCJeEEVwUSikghsNNE-TafIYRnR1Fh-c75wV1IjiSCG0hsHGBDjbiJWyCRBqEwrgkQZqYgDHcgEfLqN2khwFAJT4HmdeE3XNa1Zk48XDZXWRm_dheTMyj5PyaVjl3-V0VmRZMb8115Ni_lzNRuZqWqb3i8-7Ks2r9K34Gpv0pRx_rKIlLU4S1f7PFjrY6u53dqze3vZuZ7NnJfUEZjke00AV1cCloEQHoDmTAxcTqonEvq4ZI0xIIWrkySDwfcBEceK5PlfYaaH1v95zEWkRhf3j-Ow0qo39UIaD39PAapHzA0F9ZvA |
ClassificationCodes | TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.12086/oee.2024.240072 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Design and implementation of edge-based human action recognition algorithm based on ascend processor |
EndPage | 72 |
ExternalDocumentID | gdgc202406006 |
GroupedDBID | 2B. 4A8 8FE 8FG 92I 93N ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BPHCQ BVBZV CCPQU HCIFZ L6V M7S PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSX PTHSS TCJ |
ID | FETCH-LOGICAL-s1006-376f04e4f08da42fb0f86dc5124f2d19f4e4626adaab0f7dbb99012e827598e13 |
ISSN | 1003-501X |
IngestDate | Thu May 29 03:55:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 边端人体动作识别 昇腾处理器 edge human action recognition ascend processor spatial temporal graph convolutional 时空图卷积 轻量化 lightweight |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1006-376f04e4f08da42fb0f86dc5124f2d19f4e4626adaab0f7dbb99012e827598e13 |
ParticipantIDs | wanfang_journals_gdgc202406006 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 光电工程 |
PublicationTitle_FL | Opto-Electronic Engineering |
PublicationYear | 2024 |
Publisher | 浙江工业大学计算机科学与技术学院,浙江 杭州 310023 |
Publisher_xml | – name: 浙江工业大学计算机科学与技术学院,浙江 杭州 310023 |
SSID | ssib004297867 ssib023646518 ssib036437391 ssib023167165 ssj0002964646 ssib002258422 ssib001102639 ssib051369860 ssib000459782 |
Score | 2.4295084 |
Snippet | TP391; 针对现有的人体动作识别算法精度不足、计算量大、缺少在边端设备上的部署等问题,本文提出一种基于昇腾处理器的边端轻量化人体动作识别时空图卷积算法.通过设计隐性联... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 中插5 |
Title | 基于昇腾处理器的边端人体动作识别算法设计与实现 |
URI | https://d.wanfangdata.com.cn/periodical/gdgc202406006 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Technology Collection issn: 1003-501X databaseCode: 8FG dateStart: 20180101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/technologycollection1 omitProxy: true ssIdentifier: ssj0002964646 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNR68SKKip-lB-dUtiaTyWTmONkmFkFPLfRWNk1SvWzBbi891yoeiiDiB6IIHgqFreBFF9pfs9vdn-F7L9NN2gp-wDLMzrz39n1MMm925r1xnLthIWBk5H4jy2AECyF0QxUiaOCmU8sXKs04RiM_fCTnF8WDpWBp4lw9Q_BGJ51d2fxtXMn_WBXawK4YJfsPlh0ThQaog32hBAtD-Vc2ZnHAdMIiw2KBpYpZLJlWDFb4MZQBi2KEMeAwChaHTLtMScLSzChqMdSlEDLS2GIiZhJL0FKeY9pHLGUIq2xpIhZAlgSVQkREj5kOkY3IZzogmJjYoIrxCF0RqwEBx4gFXyO37igTTfgQSxpQAmyJgH5AvwIUxptFxH5gQYAd0xxXToFoaQUzcdWjURvAP6queYIsIHgksUaWo4SoSFbe_nP8XwkX1ZkuGt0kPKkYKx5aqGKdhAell1YxIVXmmJE1BdWUCAyhDUKEBF4q4LESJVpFuRbYJDUYEsxweIrOsjRDCHMIWjKn4xnchSnDsu00hScKA5cuGxrPYzZx75Mzk5LlCQkCTwnTZai59XfKm5POzKTcpZ29tRxzyXIxi2eNS9BT-clXs9UVhHAlpb4_z0Mp8SoRldyvrxt0_doE8Dm5rKWjhUlFiVoeSXCSQlX5xRzTNXjVdjxeeiCDyqnycffZr5I-BZ4vtbLrfnTJ8GyBLCMNjzVnjyygmPdOCUnxe-2i1V6tuZoLl5yLdo04bcoH_rIzsfn4ihMPPvf6vZ2jd89Hzw4HX7eGr7YH73eHH7ZGhz-He_v9Xq9_8Hrwcrd_8HG0vz14sTfsvj36_mbUPRx1v_R_7Ay6n4Y73646i0m80Jxv2DtQGuse_tkH83_hilwUrspaghepWyiZrYCbLgqeebqAPsllK2u1oCvM0hQ3unmueBholXv-NWeyvdbOrzvTYSq9nKfczRWsgVy_VfgF6C2DNRi8rbl7w5myYi_bd9z68gnj3vwTwC3nQvXU3XYmO0838jvgs3fSKRoPvwD0_61e |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%98%87%E8%85%BE%E5%A4%84%E7%90%86%E5%99%A8%E7%9A%84%E8%BE%B9%E7%AB%AF%E4%BA%BA%E4%BD%93%E5%8A%A8%E4%BD%9C%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95%E8%AE%BE%E8%AE%A1%E4%B8%8E%E5%AE%9E%E7%8E%B0&rft.jtitle=%E5%85%89%E7%94%B5%E5%B7%A5%E7%A8%8B&rft.au=%E8%B5%B5%E5%86%AC%E5%86%AC&rft.au=%E8%B5%96%E4%BA%AE&rft.au=%E9%99%88%E6%9C%8B&rft.au=%E5%91%A8%E9%B8%BF%E8%B6%85&rft.date=2024-06-01&rft.pub=%E6%B5%99%E6%B1%9F%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F+%E6%9D%AD%E5%B7%9E+310023&rft.issn=1003-501X&rft.volume=51&rft.issue=6&rft.spage=%E4%B8%AD%E6%8F%925&rft.epage=72&rft_id=info:doi/10.12086%2Foee.2024.240072&rft.externalDocID=gdgc202406006 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgdgc%2Fgdgc.jpg |