基于HC-MOPSO的储能电站两阶段选址定容方法
针对大规模储能规划难以兼顾电网有功功率与节点电压耦合影响的问题,提出一种基于层次聚类(hierarchical clustering,HC)-多目标粒子群(multi objective particle swarm optimization,MOPSO)算法的储能电站规划方法.首先,基于系统有功功率与节点电压间的耦合作用,建立其灵敏度模型,并采用HC算法得到电网区域划分结果,根据灵敏度指标排序选取各次区域内的电压主导节点作为储能电站接入点;其次,以系统静态电压稳定裕度最大、总投资与运行成本以及总有功网损最小为目标,建立储能电站容量配置模型,并设计嵌入潮流计算的MOPSO算法对模型进行求解.最...
Saved in:
| Published in | 中国电力 Vol. 57; no. 12; pp. 148 - 156 |
|---|---|
| Main Authors | , , , , |
| Format | Magazine Article |
| Language | Chinese |
| Published |
国网甘肃省电力公司,甘肃 兰州 730050
28.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1004-9649 |
| DOI | 10.11930/j.issn.1004-9649.202407093 |
Cover
| Abstract | 针对大规模储能规划难以兼顾电网有功功率与节点电压耦合影响的问题,提出一种基于层次聚类(hierarchical clustering,HC)-多目标粒子群(multi objective particle swarm optimization,MOPSO)算法的储能电站规划方法.首先,基于系统有功功率与节点电压间的耦合作用,建立其灵敏度模型,并采用HC算法得到电网区域划分结果,根据灵敏度指标排序选取各次区域内的电压主导节点作为储能电站接入点;其次,以系统静态电压稳定裕度最大、总投资与运行成本以及总有功网损最小为目标,建立储能电站容量配置模型,并设计嵌入潮流计算的MOPSO算法对模型进行求解.最后,以IEEE39 节点电力系统网络为例,验证所提方法和模型的可行性与有效性.仿真结果表明,本文提出的规划方法相较于传统方法可以进一步降低系统有功线损,并提高静态电压稳定裕度. |
|---|---|
| AbstractList | 针对大规模储能规划难以兼顾电网有功功率与节点电压耦合影响的问题,提出一种基于层次聚类(hierarchical clustering,HC)-多目标粒子群(multi objective particle swarm optimization,MOPSO)算法的储能电站规划方法.首先,基于系统有功功率与节点电压间的耦合作用,建立其灵敏度模型,并采用HC算法得到电网区域划分结果,根据灵敏度指标排序选取各次区域内的电压主导节点作为储能电站接入点;其次,以系统静态电压稳定裕度最大、总投资与运行成本以及总有功网损最小为目标,建立储能电站容量配置模型,并设计嵌入潮流计算的MOPSO算法对模型进行求解.最后,以IEEE39 节点电力系统网络为例,验证所提方法和模型的可行性与有效性.仿真结果表明,本文提出的规划方法相较于传统方法可以进一步降低系统有功线损,并提高静态电压稳定裕度. |
| Abstract_FL | A planning method for energy storage stations based on Hierarchical Clustering(HC)and Multi Objective Particle Swarm Optimization(MOPSO)is proposed to address the difficulty of balancing the coupling effects of active power and node voltage in large-scale energy storage planning.Firstly,based on the coupling effect between system active power and node voltage,a sensitivity model is established,and the HC algorithm is used to obtain the results of power grid regional division.Furthermore,based on sensitivity indicators,select the voltage dominant nodes within each sub region as the access points for energy storage power stations;Secondly,a capacity configuration model for energy storage power stations is established with the objectives of maximizing the system's static voltage stability margin,minimizing total investment and operating costs,and minimizing total active power losses.The MOPSO algorithm embedded in power flow calculation is designed to solve the model.Finally,taking the IEEE 39 node power system network as an example,the feasibility and effectiveness of the proposed method and model are verified.The simulation results show that the planning method proposed in this paper can further reduce the active line loss of the system and improve the static voltage stability margin compared to traditional methods. |
| Author | 李万伟 白望望 张耀忠 王涛 杨德州 |
| AuthorAffiliation | 国网甘肃省电力公司,甘肃 兰州 730050 |
| AuthorAffiliation_xml | – name: 国网甘肃省电力公司,甘肃 兰州 730050 |
| Author_FL | WANG Tao ZHANG Yaozhong YANG Dezhou BAI Wangwang LI Wanwei |
| Author_FL_xml | – sequence: 1 fullname: BAI Wangwang – sequence: 2 fullname: YANG Dezhou – sequence: 3 fullname: LI Wanwei – sequence: 4 fullname: WANG Tao – sequence: 5 fullname: ZHANG Yaozhong |
| Author_xml | – sequence: 1 fullname: 白望望 – sequence: 2 fullname: 杨德州 – sequence: 3 fullname: 李万伟 – sequence: 4 fullname: 王涛 – sequence: 5 fullname: 张耀忠 |
| BookMark | eNo9jz9Lw0Achm-oYK39FOKY-Ls_udyNEtQKlQjqXK65pBjKFTxEcCrq4uJkRQvi4iAIWaRiC36bJrHfwoji8PLCOzwP7wqqmYGJEVrD4GIsKWyk7rG1xsUAzJGcSZcAYeCDpDVU_1-XUdPaFAAwSC4JrSORP83ms5tW4OyF-wdhOb7KL16-Lj_L20n5-jD_eF7cvxfZZDG8zh-HeTbOs2lxNy3eRqtoKVF9Gzf_uoGOtrcOg5bTDnd2g822Yyur52hIorgK93SkJO3ySPgEIplglgAooanPYq2YZoICpwIw1jjqCu5rLiRXtIHWf7lnyiTK9Drp4PTEVMbOeU_3f15iAtij3_zgXFw |
| ContentType | Magazine Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11930/j.issn.1004-9649.202407093 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | A Two-Stage Site Selection and Capacity Determination Method for Energy Storage Power Stations Based on HC-MOPSO |
| EndPage | 156 |
| ExternalDocumentID | zgdl202412015 |
| GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS ARCSS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5M |
| ID | FETCH-LOGICAL-s1005-d0fce0fc65dca93b6c8720c9f14f00a8d374eda4d4830638011d1cb867d6896a3 |
| ISSN | 1004-9649 |
| IngestDate | Thu May 29 04:08:23 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Keywords | 容量配置 voltage dominant node 选址规划 static voltage stability margin capacity configuration power grid zoning site selection planning 静态电压稳定裕度 电压主导节点 电网分区 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1005-d0fce0fc65dca93b6c8720c9f14f00a8d374eda4d4830638011d1cb867d6896a3 |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_zgdl202412015 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-28 |
| PublicationDateYYYYMMDD | 2024-12-28 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | 中国电力 |
| PublicationTitle_FL | Electric Power |
| PublicationYear | 2024 |
| Publisher | 国网甘肃省电力公司,甘肃 兰州 730050 |
| Publisher_xml | – name: 国网甘肃省电力公司,甘肃 兰州 730050 |
| SSID | ssj0001096923 ssib001129049 ssib051368982 |
| Score | 1.4460402 |
| Snippet | 针对大规模储能规划难以兼顾电网有功功率与节点电压耦合影响的问题,提出一种基于层次聚类(hierarchical clustering,HC)-多目标粒子群(multi objective particle swarm... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 148 |
| Title | 基于HC-MOPSO的储能电站两阶段选址定容方法 |
| URI | https://d.wanfangdata.com.cn/periodical/zgdl202412015 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0GqLhODCWzyrSuBTlbJPr33c3WwUIZUi0Yreql07Ww4oSDS95FQBFy6cAEElxIUDElIuqIhW4m-ahP4FM15vsmlAPA6xRvbszHhmvR47njEhtzwvyHMmbbCAUDUvzWVNCCeDgWdhGCRTUuI_ust3WXPNu7Pur8_MPqicWtruZEuy-8u4kv-xKtSBXTFK9h8sOyIKFQCDfaEEC0P5VzamiU9Fg0YhTTwsedKMa8sr9-6v0CSgAio8ROEODTlNOOUujeq6CdB9BMKICqGf5jQEZEEFpxGjCaNhonEEnoXgQrOqIwwANAHxAogEIgtmgMilxXWWpcdbEq9rCtGkACBbCJWl1XWL0ChAMkb0EhijMJQD--PTCNgHGoDnkmMoPDGseaABoNKoMoJ2rulDdw19s_vh6ByLJpoc39cJ0aEUtumDKNTqoGaxJgbHfLp7GgBlxRpooExOPE1h0eBF1qhLizrPv1WZOfBEj2BF_tVyailyb5dDyKlMFHaRX9T4HHaRXH16OhOupeczZLE0YrGEmoBvdXG35LF84d1N9QjbbXDt_FlywoHpzq7sNWg_GXcfx-tu33YZFybJkd6chIWtcIrgFMPzJLlZSnT79_Lo0Ld2nrY3K17a6llypkyXvhAWg-Ucmek-PE9OV7JuXiC8_-Hg8OBlOVSGu8_7Tz_9ePZ9-Gpv-Pnd4bePR2-_Dnp7Rzsv-u93-r3dfm9_8GZ_8OX1RbLWSFbjZs1cIFLbsjHDrrJy2YIf85VMhZsxyQPHkiK3vdyyUq7cwGup1FMed9F1B70oW2acBQr0wVL3EplrP263LpMFKWHpbSnlpIHvMcUyTHHbagF56QawLL9C5k3HN8wHYmtjwhJX_4RwjZwav-DXyVznyXbrBji8nWxeG-8nfk18tA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EHC-MOPSO%E7%9A%84%E5%82%A8%E8%83%BD%E7%94%B5%E7%AB%99%E4%B8%A4%E9%98%B6%E6%AE%B5%E9%80%89%E5%9D%80%E5%AE%9A%E5%AE%B9%E6%96%B9%E6%B3%95&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%94%B5%E5%8A%9B&rft.au=%E7%99%BD%E6%9C%9B%E6%9C%9B&rft.au=%E6%9D%A8%E5%BE%B7%E5%B7%9E&rft.au=%E6%9D%8E%E4%B8%87%E4%BC%9F&rft.au=%E7%8E%8B%E6%B6%9B&rft.date=2024-12-28&rft.pub=%E5%9B%BD%E7%BD%91%E7%94%98%E8%82%83%E7%9C%81%E7%94%B5%E5%8A%9B%E5%85%AC%E5%8F%B8%2C%E7%94%98%E8%82%83+%E5%85%B0%E5%B7%9E+730050&rft.issn=1004-9649&rft.volume=57&rft.issue=12&rft.spage=148&rft.epage=156&rft_id=info:doi/10.11930%2Fj.issn.1004-9649.202407093&rft.externalDocID=zgdl202412015 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgdl%2Fzgdl.jpg |