面向行人导航意图探测的脑电分类研究

P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 53; no. 9; pp. 1829 - 1841
Main Authors 方志祥, 王禄斌
Format Journal Article
LanguageChinese
Published 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079 16.10.2024
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2024.20230444

Cover

Abstract P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连接网络,完成由脑电到4类导航意图的映射,并利用9个被试者的脑电数据作为样本集对本文方法的有效性进行验证.试验结果表明,采用短时窗(1 s)探测4类导航意图的平均精度为0.443±0.062,最高精度可达0.571.采用长时窗(6 s)探测4类导航意图的平均精度为0.525 士0.084,最高精度可达0.665.该方法的探测精度略优于其他脑电解译算法,且对前进和停止意图的识别能力优秀,最高可达0.740和0.700.
AbstractList P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连接网络,完成由脑电到4类导航意图的映射,并利用9个被试者的脑电数据作为样本集对本文方法的有效性进行验证.试验结果表明,采用短时窗(1 s)探测4类导航意图的平均精度为0.443±0.062,最高精度可达0.571.采用长时窗(6 s)探测4类导航意图的平均精度为0.525 士0.084,最高精度可达0.665.该方法的探测精度略优于其他脑电解译算法,且对前进和停止意图的识别能力优秀,最高可达0.740和0.700.
Abstract_FL The automatic recognition of pedestrian intentions is a difficult issue in location-based services,which is crucial for establishing intelligent navigation services and new human-computer interaction method.Currently,using behavior patterns to estimate pedestrian intentions has become a mainstream solution,but this approach relies on multiple sensors and has time de-lays.This article proposes a pedestrian intention detection method based on brain imaging technology,which interprets pedes-trian turning intentions through multi-channel,high-resolution EEG signals.Firstly,according to the standard motor imagery paradigm,EEG samples corresponding to four types of intentions within road intersection scenes were collected,including straight ahead,stop,left turn,and right turn.Then,by fusing the features of EEG in time-frequency domain,spatial domain,and functional connectivity domain,the spatiotemporal functional connectivity networks(STFCNs)of EEG are constructed to express the process of EEG activity,facilitating the capture of EEG features highly related to the intent.Finally,a graph conv-olutional neural network was used to encode the STFCNs,completing the mapping from EEG to four types of navigation inten-tions.The experimental results show that the average accuracy(F1 score)of detecting four types of intentions using a short time window(1s)is 0.443±0.062,and the highest accuracy can reach 0.571.The average accuracy with a long time window(6 s)is 0.525±0.084,and the highest accuracy is 0.665.The detection accuracy of this method is slightly better than other classification algorithms,and its detection ability for forward and stop intentions is excellent,up to 0.740 and 0.700.
Author 方志祥
王禄斌
AuthorAffiliation 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079
AuthorAffiliation_xml – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079
Author_FL WANG Lubin
FANG Zhixiang
Author_FL_xml – sequence: 1
  fullname: FANG Zhixiang
– sequence: 2
  fullname: WANG Lubin
Author_xml – sequence: 1
  fullname: 方志祥
– sequence: 2
  fullname: 王禄斌
BookMark eNotj7tKA0EYRqeIYIx5BEvLXf9_Ljs7ZVg0CgELtQ4zuztqkA24iD7AIgFFDaSKCJpOG7GIRRSfxr34FiZo853uHL4VUkv6SUzIGoKLqLjc6LmtdrDnUqB8MQw45zVSRwB0UCixTJppemwABGdSMFUn7Odhkt8Nq6fr79ksf_2sBi9FdpvffxU3k2J6VY6zKhuWo2k-uCzfPsrHUfn8vkqWrD5J4-Y_G-Rga3M_2HY6u-2doNVx0nlQOJJTHTNgXEPocx-l1BTAM9pG2iB6ynJmqA2jSDHjh9KTsVaeMSKiwkOIWIOs_3nPdWJ1ctjt9c9Ok3mxGx5dmMVJUICC_QJKcFoK
ClassificationCodes P228
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2024.20230444
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL Detecting pedestrian intention using EEG signals in navigation
EndPage 1841
ExternalDocumentID chxb202409015
GroupedDBID -01
2B.
4A8
5VS
5XA
5XB
7X2
92E
92I
93N
ABJNI
ACGFS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CW9
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PMFND
PSX
PYCSY
RIG
TCJ
TGP
U1G
U5K
ID FETCH-LOGICAL-s1005-742ae3034a0c848177a2006bafdab1169f43b2fcdd93b8c767ea96bb5d25610d3
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords 导航意图识别
GCN
行人导航
pedestrian navigation
intention detection
EEG
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1005-742ae3034a0c848177a2006bafdab1169f43b2fcdd93b8c767ea96bb5d25610d3
PageCount 13
ParticipantIDs wanfang_journals_chxb202409015
PublicationCentury 2000
PublicationDate 2024-10-16
PublicationDateYYYYMMDD 2024-10-16
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-16
  day: 16
PublicationDecade 2020
PublicationTitle 测绘学报
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2024
Publisher 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079
Publisher_xml – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.4451156
Snippet P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这...
SourceID wanfang
SourceType Aggregation Database
StartPage 1829
Title 面向行人导航意图探测的脑电分类研究
URI https://d.wanfangdata.com.cn/periodical/chxb202409015
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssib005437539
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB6SePEiPomvsAfbi2zcmelXHXtmZw2KgphAbmF6ZtdcsgE3Ac15kYCiBnJSBM1NL-IhHqL4a9xs_BdW9Yyb2RDwAWEYqqtrvq7KdH092w_Pu5bpDFTahrqCXNZ5LmRdC5roqpVKRaeRWqDFyXfvybkFfntRLE5MrlZmLa2v2dls49h1Jf8TVZRhXGmV7D9EdmQUBXiP8cUrRhivfxVjlgCDJjMBSwSDBgOfJZoZn-mYJZxFhv6wyLRYFFORxlKUSKaRQrZcrYhFiZMkzo5kkWA6YoliYEiNanFnGSWcSrEW2tGSJJHPIqdsGlRKN8AiWaW8YzZRGbSDhLCle65hRvwOOwkA1YFUohYD5UyKMRVFWAtzxrWkqKTj6heMgFPXXyywdP9zpDV6KMLW7hmGM6PG8ByFCsi1CUHhNGg5x7bIySTxybeE1aEkRNpVLxzbdJYTdIizg8CbDn5QthCLIKEiDAqFzEkQUhA7JEDNIm_HzhFH8d_gIVIvqKQVmriGxFFU806xSXL5fkElieCQDyqEBMfg_vHJDrhy2c7cih_MkmfpEtIOgIfZfTTnMlt-bEmnQQxw0jsRYBqks07u3K_ycWTDusr3sHuu7GcneIjD2xH_pcMKuDzcb1L4oQoljMafRG6Fm25QNr9cQkfAbx4H262c63bS7sMKyZs_7Z0qR2c1U7xqZ7yJjeWz3rTp0e9FqytPatdr7r74HNg754U_3-4MXm0dvH_-Y29v8OnbwebH_f7LwZvv-y929nefDV_3D_pbw-3dwebT4eevw3fbww9fznsLrWQ-nquXx5DUez7t06t4kLaR6fG0kdHhE9iJ0Xc4m3by1Pq-hA4PbdDJ8hxCqzMlVTsFaa3IAxqc5OEFb6q72m1Pe7WOb22eh6m2aZsrbcEHHPFkFvIw8zPduOjNlO1fKruZ3tJY3C79SeGyd_LwFbviTa09Wm9fRdq8ZmdcqH8BZzKLQQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E8%A1%8C%E4%BA%BA%E5%AF%BC%E8%88%AA%E6%84%8F%E5%9B%BE%E6%8E%A2%E6%B5%8B%E7%9A%84%E8%84%91%E7%94%B5%E5%88%86%E7%B1%BB%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E6%96%B9%E5%BF%97%E7%A5%A5&rft.au=%E7%8E%8B%E7%A6%84%E6%96%8C&rft.date=2024-10-16&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430079&rft.issn=1001-1595&rft.volume=53&rft.issue=9&rft.spage=1829&rft.epage=1841&rft_id=info:doi/10.11947%2Fj.AGCS.2024.20230444&rft.externalDocID=chxb202409015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg