面向行人导航意图探测的脑电分类研究
P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连...
Saved in:
| Published in | 测绘学报 Vol. 53; no. 9; pp. 1829 - 1841 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Chinese |
| Published |
武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079
16.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-1595 |
| DOI | 10.11947/j.AGCS.2024.20230444 |
Cover
| Abstract | P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连接网络,完成由脑电到4类导航意图的映射,并利用9个被试者的脑电数据作为样本集对本文方法的有效性进行验证.试验结果表明,采用短时窗(1 s)探测4类导航意图的平均精度为0.443±0.062,最高精度可达0.571.采用长时窗(6 s)探测4类导航意图的平均精度为0.525 士0.084,最高精度可达0.665.该方法的探测精度略优于其他脑电解译算法,且对前进和停止意图的识别能力优秀,最高可达0.740和0.700. |
|---|---|
| AbstractList | P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这种方案依赖多种传感器且具有时滞性.本文提出了一种基于脑成像技术的行人导航意图探测方法,通过多导联的、高时间分辨率的脑电信号解译行人的转向意图.首先,在处于道路交叉口的场景下,依照标准的运动想象范式采集得到4类导航意图对应的脑电原始数据,包括直行、停止、左转和右转;然后,融合脑电在时频域、空间域与功能连接上的特征,构建表达脑电活动过程的脑电时空连接网络,便于捕获与导航意图高度相关的脑电特征;最后,采用图卷积神经网络编码脑电时空连接网络,完成由脑电到4类导航意图的映射,并利用9个被试者的脑电数据作为样本集对本文方法的有效性进行验证.试验结果表明,采用短时窗(1 s)探测4类导航意图的平均精度为0.443±0.062,最高精度可达0.571.采用长时窗(6 s)探测4类导航意图的平均精度为0.525 士0.084,最高精度可达0.665.该方法的探测精度略优于其他脑电解译算法,且对前进和停止意图的识别能力优秀,最高可达0.740和0.700. |
| Abstract_FL | The automatic recognition of pedestrian intentions is a difficult issue in location-based services,which is crucial for establishing intelligent navigation services and new human-computer interaction method.Currently,using behavior patterns to estimate pedestrian intentions has become a mainstream solution,but this approach relies on multiple sensors and has time de-lays.This article proposes a pedestrian intention detection method based on brain imaging technology,which interprets pedes-trian turning intentions through multi-channel,high-resolution EEG signals.Firstly,according to the standard motor imagery paradigm,EEG samples corresponding to four types of intentions within road intersection scenes were collected,including straight ahead,stop,left turn,and right turn.Then,by fusing the features of EEG in time-frequency domain,spatial domain,and functional connectivity domain,the spatiotemporal functional connectivity networks(STFCNs)of EEG are constructed to express the process of EEG activity,facilitating the capture of EEG features highly related to the intent.Finally,a graph conv-olutional neural network was used to encode the STFCNs,completing the mapping from EEG to four types of navigation inten-tions.The experimental results show that the average accuracy(F1 score)of detecting four types of intentions using a short time window(1s)is 0.443±0.062,and the highest accuracy can reach 0.571.The average accuracy with a long time window(6 s)is 0.525±0.084,and the highest accuracy is 0.665.The detection accuracy of this method is slightly better than other classification algorithms,and its detection ability for forward and stop intentions is excellent,up to 0.740 and 0.700. |
| Author | 方志祥 王禄斌 |
| AuthorAffiliation | 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079 |
| AuthorAffiliation_xml | – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079 |
| Author_FL | WANG Lubin FANG Zhixiang |
| Author_FL_xml | – sequence: 1 fullname: FANG Zhixiang – sequence: 2 fullname: WANG Lubin |
| Author_xml | – sequence: 1 fullname: 方志祥 – sequence: 2 fullname: 王禄斌 |
| BookMark | eNotj7tKA0EYRqeIYIx5BEvLXf9_Ljs7ZVg0CgELtQ4zuztqkA24iD7AIgFFDaSKCJpOG7GIRRSfxr34FiZo853uHL4VUkv6SUzIGoKLqLjc6LmtdrDnUqB8MQw45zVSRwB0UCixTJppemwABGdSMFUn7Odhkt8Nq6fr79ksf_2sBi9FdpvffxU3k2J6VY6zKhuWo2k-uCzfPsrHUfn8vkqWrD5J4-Y_G-Rga3M_2HY6u-2doNVx0nlQOJJTHTNgXEPocx-l1BTAM9pG2iB6ynJmqA2jSDHjh9KTsVaeMSKiwkOIWIOs_3nPdWJ1ctjt9c9Ok3mxGx5dmMVJUICC_QJKcFoK |
| ClassificationCodes | P228 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11947/j.AGCS.2024.20230444 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| DocumentTitle_FL | Detecting pedestrian intention using EEG signals in navigation |
| EndPage | 1841 |
| ExternalDocumentID | chxb202409015 |
| GroupedDBID | -01 2B. 4A8 5VS 5XA 5XB 7X2 92E 92I 93N ABJNI ACGFS AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CW9 HCIFZ IPNFZ M0K M7P OK1 P2P PATMY PCBAR PHGZM PHGZT PIMPY PMFND PSX PYCSY RIG TCJ TGP U1G U5K |
| ID | FETCH-LOGICAL-s1005-742ae3034a0c848177a2006bafdab1169f43b2fcdd93b8c767ea96bb5d25610d3 |
| ISSN | 1001-1595 |
| IngestDate | Thu May 29 04:11:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Keywords | 导航意图识别 GCN 行人导航 pedestrian navigation intention detection EEG |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1005-742ae3034a0c848177a2006bafdab1169f43b2fcdd93b8c767ea96bb5d25610d3 |
| PageCount | 13 |
| ParticipantIDs | wanfang_journals_chxb202409015 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-16 |
| PublicationDateYYYYMMDD | 2024-10-16 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | 测绘学报 |
| PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
| PublicationYear | 2024 |
| Publisher | 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079 |
| Publisher_xml | – name: 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉 430079 |
| SSID | ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 ssj0058465 |
| Score | 2.4451156 |
| Snippet | P228; 行人导航意图的自动识别是行人导航研究的一个难点问题,对建立智慧导航服务与新型的人机交互方式至关重要.目前,利用行为模式推估导航意图成为主流的解决方案,但是,这... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 1829 |
| Title | 面向行人导航意图探测的脑电分类研究 |
| URI | https://d.wanfangdata.com.cn/periodical/chxb202409015 |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1001-1595 databaseCode: KQ8 dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssib005437539 providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB6SePEiPomvsAfbi2zcmelXHXtmZw2KgphAbmF6ZtdcsgE3Ac15kYCiBnJSBM1NL-IhHqL4a9xs_BdW9Yyb2RDwAWEYqqtrvq7KdH092w_Pu5bpDFTahrqCXNZ5LmRdC5roqpVKRaeRWqDFyXfvybkFfntRLE5MrlZmLa2v2dls49h1Jf8TVZRhXGmV7D9EdmQUBXiP8cUrRhivfxVjlgCDJjMBSwSDBgOfJZoZn-mYJZxFhv6wyLRYFFORxlKUSKaRQrZcrYhFiZMkzo5kkWA6YoliYEiNanFnGSWcSrEW2tGSJJHPIqdsGlRKN8AiWaW8YzZRGbSDhLCle65hRvwOOwkA1YFUohYD5UyKMRVFWAtzxrWkqKTj6heMgFPXXyywdP9zpDV6KMLW7hmGM6PG8ByFCsi1CUHhNGg5x7bIySTxybeE1aEkRNpVLxzbdJYTdIizg8CbDn5QthCLIKEiDAqFzEkQUhA7JEDNIm_HzhFH8d_gIVIvqKQVmriGxFFU806xSXL5fkElieCQDyqEBMfg_vHJDrhy2c7cih_MkmfpEtIOgIfZfTTnMlt-bEmnQQxw0jsRYBqks07u3K_ycWTDusr3sHuu7GcneIjD2xH_pcMKuDzcb1L4oQoljMafRG6Fm25QNr9cQkfAbx4H262c63bS7sMKyZs_7Z0qR2c1U7xqZ7yJjeWz3rTp0e9FqytPatdr7r74HNg754U_3-4MXm0dvH_-Y29v8OnbwebH_f7LwZvv-y929nefDV_3D_pbw-3dwebT4eevw3fbww9fznsLrWQ-nquXx5DUez7t06t4kLaR6fG0kdHhE9iJ0Xc4m3by1Pq-hA4PbdDJ8hxCqzMlVTsFaa3IAxqc5OEFb6q72m1Pe7WOb22eh6m2aZsrbcEHHPFkFvIw8zPduOjNlO1fKruZ3tJY3C79SeGyd_LwFbviTa09Wm9fRdq8ZmdcqH8BZzKLQQ |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E8%A1%8C%E4%BA%BA%E5%AF%BC%E8%88%AA%E6%84%8F%E5%9B%BE%E6%8E%A2%E6%B5%8B%E7%9A%84%E8%84%91%E7%94%B5%E5%88%86%E7%B1%BB%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E6%96%B9%E5%BF%97%E7%A5%A5&rft.au=%E7%8E%8B%E7%A6%84%E6%96%8C&rft.date=2024-10-16&rft.pub=%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E9%81%A5%E6%84%9F%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%9B%BD%E5%AE%B6%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B9%96%E5%8C%97%E6%AD%A6%E6%B1%89+430079&rft.issn=1001-1595&rft.volume=53&rft.issue=9&rft.spage=1829&rft.epage=1841&rft_id=info:doi/10.11947%2Fj.AGCS.2024.20230444&rft.externalDocID=chxb202409015 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |