基于生成对抗网络的行人异常行为图像去模糊算法研究
TP751%TP391; 为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法.使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采样时使用的转置卷积,对需要上采样的特征图进行双线性插值.将原算法生成器结构中的残差单元替换成密集残差块(RRDB),然后将得到的残差特征缩放到0~1之间的值,避免训练不稳定.在原生成器的损失函数中添加梯度图像的L1损失,增加图像的边缘信息使重建后的图像边缘更明显,克服了DeblurGAN重建图像边缘细节不够清晰的缺陷.经实验验证,并和文献[14]、文献[18]进行比较,结果显示:优化后的模型与DeblurG...
        Saved in:
      
    
          | Published in | 光电工程 Vol. 48; no. 6; pp. 29 - 39 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            江南大学物联网工程学院,江苏 无锡 214122
    
        15.06.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1003-501X | 
| DOI | 10.12086/oee.2021.210009 | 
Cover
| Abstract | TP751%TP391; 为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法.使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采样时使用的转置卷积,对需要上采样的特征图进行双线性插值.将原算法生成器结构中的残差单元替换成密集残差块(RRDB),然后将得到的残差特征缩放到0~1之间的值,避免训练不稳定.在原生成器的损失函数中添加梯度图像的L1损失,增加图像的边缘信息使重建后的图像边缘更明显,克服了DeblurGAN重建图像边缘细节不够清晰的缺陷.经实验验证,并和文献[14]、文献[18]进行比较,结果显示:优化后的模型与DeblurGAN相比,峰值信噪比提高0.94,结构相似度和速度相当,并解决了重建后图像棋盘格子的问题,细节边缘更加突出,模型性能优于相关算法. | 
    
|---|---|
| AbstractList | TP751%TP391; 为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法.使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采样时使用的转置卷积,对需要上采样的特征图进行双线性插值.将原算法生成器结构中的残差单元替换成密集残差块(RRDB),然后将得到的残差特征缩放到0~1之间的值,避免训练不稳定.在原生成器的损失函数中添加梯度图像的L1损失,增加图像的边缘信息使重建后的图像边缘更明显,克服了DeblurGAN重建图像边缘细节不够清晰的缺陷.经实验验证,并和文献[14]、文献[18]进行比较,结果显示:优化后的模型与DeblurGAN相比,峰值信噪比提高0.94,结构相似度和速度相当,并解决了重建后图像棋盘格子的问题,细节边缘更加突出,模型性能优于相关算法. | 
    
| Author | 滕彬 吉训生  | 
    
| AuthorAffiliation | 江南大学物联网工程学院,江苏 无锡 214122 | 
    
| AuthorAffiliation_xml | – name: 江南大学物联网工程学院,江苏 无锡 214122 | 
    
| Author_FL | Teng Bin Ji Xunsheng  | 
    
| Author_FL_xml | – sequence: 1 fullname: Ji Xunsheng – sequence: 2 fullname: Teng Bin  | 
    
| Author_xml | – sequence: 1 fullname: 吉训生 – sequence: 2 fullname: 滕彬  | 
    
| BookMark | eNotjz1Lw0Acxm-oYK3d_QKOif-7Sy7JKEWtUHBRcCuX3F1QJAGDuKuDFKkKlYIKtZsuOhQkpuqn6eX8GKbos_ye6XlZQrUkTSRCKxhsTMBna6mUNgGCbYIBIKihekVquYD3F1Ezyw5CAIcEns-8OmrrUTEr-mYwKi9v9NtH2Ruar1szfTT3Fz_jq1lR6M8znedznxf64VufX-v-tHwem0nPvA7LyZ15GpiX92W0oPhRJpv_bKC9zY3dVtvq7Gxtt9Y7VlatcKxIEMKFIMJxK3EQoQuKep7iPlOuyzDgACLhMRn5GHMMAWU0AqmUHwYSKG2g1b_cU54onsTdw_TkOKkau7GIo_lvYFUR_QUpomjM | 
    
| ClassificationCodes | TP751%TP391 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.12086/oee.2021.210009 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| DocumentTitle_FL | Deblurring algorithm based on pedestrian abnormal behavior generation countermeasure network | 
    
| EndPage | 39 | 
    
| ExternalDocumentID | gdgc202106004 | 
    
| GrantInformation_xml | – fundername: 国家自然科学基金资助项目 funderid: (61771223)  | 
    
| GroupedDBID | 2B. 4A8 8FE 8FG 92I 93N ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR BGLVJ BPHCQ BVBZV CCPQU HCIFZ L6V M7S PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSX PTHSS TCJ  | 
    
| ID | FETCH-LOGICAL-s1004-cd22add2d45555a0db50f377fa86f55610190cd76ec811a109363c0eff8b9e033 | 
    
| ISSN | 1003-501X | 
    
| IngestDate | Thu May 29 03:55:49 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | 生成对抗网络 运动模糊 图像重建 密集残差块  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1004-cd22add2d45555a0db50f377fa86f55610190cd76ec811a109363c0eff8b9e033 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | wanfang_journals_gdgc202106004 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-06-15 | 
    
| PublicationDateYYYYMMDD | 2021-06-15 | 
    
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 光电工程 | 
    
| PublicationTitle_FL | Opto-Electronic Engineering | 
    
| PublicationYear | 2021 | 
    
| Publisher | 江南大学物联网工程学院,江苏 无锡 214122 | 
    
| Publisher_xml | – name: 江南大学物联网工程学院,江苏 无锡 214122 | 
    
| SSID | ssib004297867 ssib023646518 ssib036437391 ssib023167165 ssj0002964646 ssib002258422 ssib001102639 ssib051369860 ssib000459782  | 
    
| Score | 2.3133757 | 
    
| Snippet | TP751%TP391; 为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法.使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 29 | 
    
| Title | 基于生成对抗网络的行人异常行为图像去模糊算法研究 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/gdgc202106004 | 
    
| Volume | 48 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Technology Collection issn: 1003-501X databaseCode: 8FG dateStart: 20180101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/technologycollection1 omitProxy: true ssIdentifier: ssj0002964646 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9VAEA-1XryIouJn6cE9ldTNJrvZPSbv5fkQ9NRCbyWf9fQKtr30qB6kSFWoFFSovelFDwV5vqp_TfPin-HMZn1Jq-BHCGEYfjszu5NkJ9ndWcu6WfCCy0xwG_ryxPaEp-yY89yWGc9EktA4prga-e490V_07izxpalTi61ZSxvryXy6-dt1Jf_jVeCBX3GV7D94diIUGECDf-EKHobrX_mYRJyoHgkDEnl4lRGJfKI8ZEaCSEkURUwAGKU5AVE-YsIuUY4mQqI6uhQU90gkSeAQ2TECUTInYYdIpgmJ5zGMNBgVkjBCQrpE9jQRoXBQGmg86nLRACCCSJshkKO45lA0GwlFQtGOmLUoOJWpWsi1JYCsC0oiJ6NG2hCqsRKVBN1JezQQoetcS-kSk3rS_Pdgen5WvfJT36ka7uj2BBu62mxoT48ENQECBOoAlYHWKh1TEdPCJ01tlVJEQSkGN3lLi8bI3hyylG4XxIE-Z445nsNaf2kdnPDHqd4LaNLNeLL1OB3rM1Qr-qgzO_3SrzGqx9lWc8zsypx5hsMyqunDJzMrV7KVFBFU6Cy5pxl0drijiezdbkfxqr2JAUSATLSSw8IrXnqtrI4QsviyiVIZJk9wmsFx3IJA8CbEcXEs2G1SMHHHFUqar3AMkHCkX9Tr_n42lJlAgNW8daKSejXdoIgHK63Ab-GcddZ8sc0G9eN33pravH_B6pd7o6PRdrWzN37yvPz4eby1W319UR2-qV49_r7_9Gg0Kr88LIdDpIej8vW38tGzcvtw_G6_OtiqPuyOD15Wb3eq958uWou9aKHTt82mJPYaJle004wxiAlY5nE4YpolnBau7xexFAXuNYvJGdLMF3kqHSfGbG3CTWleFDJROXXdS9b0YHWQX7ZmGVcFE5nvylR5LC0SRlOfsixJEub6Kr1izZiaL5uXztryMf9e_RPgmnWmeXSuW9PrDzbyGxBErycz-pb4AVX0lfc | 
    
| linkProvider | ProQuest | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%94%9F%E6%88%90%E5%AF%B9%E6%8A%97%E7%BD%91%E7%BB%9C%E7%9A%84%E8%A1%8C%E4%BA%BA%E5%BC%82%E5%B8%B8%E8%A1%8C%E4%B8%BA%E5%9B%BE%E5%83%8F%E5%8E%BB%E6%A8%A1%E7%B3%8A%E7%AE%97%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%85%89%E7%94%B5%E5%B7%A5%E7%A8%8B&rft.au=%E5%90%89%E8%AE%AD%E7%94%9F&rft.au=%E6%BB%95%E5%BD%AC&rft.date=2021-06-15&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E7%89%A9%E8%81%94%E7%BD%91%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E6%97%A0%E9%94%A1+214122&rft.issn=1003-501X&rft.volume=48&rft.issue=6&rft.spage=29&rft.epage=39&rft_id=info:doi/10.12086%2Foee.2021.210009&rft.externalDocID=gdgc202106004 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgdgc%2Fgdgc.jpg |