基于小波包与SOM神经网络的截齿磨损状态识别

TD421.6; 为实现采煤机截割过程中截齿磨损状态的实时在线监测,采用声发射传感器对不同磨损程度截齿截割时的声发射信号进行采集,采用小波包分析方法分析声发射信号不同频带能量的变化规律,建立能量值的样本空间,构建基于SOM神经网络的截齿磨损识别模型,实现对截齿不同磨损状态的在线监测.通过随机测试实验对截齿磨损状态识别模型进行验证,结果表明,基于小波包分析与SOM神经网络的截齿预测磨损状态识别模型识别精度较高,测试样本识别精度约95%.研究结果为准确识别截齿的磨损状态、提高采煤机的工作效率提供一种重要的技术手段....

Full description

Saved in:
Bibliographic Details
Published in煤炭学报 Vol. 43; no. 7; pp. 2077 - 2083
Main Authors 张强, 顾颉颖, 刘峻铭, 刘志恒, 田莹
Format Journal Article
LanguageChinese
Published 辽宁工程技术大学机械工程学院,辽宁阜新,123000 01.07.2018
Subjects
Online AccessGet full text
ISSN0253-9993
DOI10.13225/j.cnki.jccs.2017.1213

Cover

Abstract TD421.6; 为实现采煤机截割过程中截齿磨损状态的实时在线监测,采用声发射传感器对不同磨损程度截齿截割时的声发射信号进行采集,采用小波包分析方法分析声发射信号不同频带能量的变化规律,建立能量值的样本空间,构建基于SOM神经网络的截齿磨损识别模型,实现对截齿不同磨损状态的在线监测.通过随机测试实验对截齿磨损状态识别模型进行验证,结果表明,基于小波包分析与SOM神经网络的截齿预测磨损状态识别模型识别精度较高,测试样本识别精度约95%.研究结果为准确识别截齿的磨损状态、提高采煤机的工作效率提供一种重要的技术手段.
AbstractList TD421.6; 为实现采煤机截割过程中截齿磨损状态的实时在线监测,采用声发射传感器对不同磨损程度截齿截割时的声发射信号进行采集,采用小波包分析方法分析声发射信号不同频带能量的变化规律,建立能量值的样本空间,构建基于SOM神经网络的截齿磨损识别模型,实现对截齿不同磨损状态的在线监测.通过随机测试实验对截齿磨损状态识别模型进行验证,结果表明,基于小波包分析与SOM神经网络的截齿预测磨损状态识别模型识别精度较高,测试样本识别精度约95%.研究结果为准确识别截齿的磨损状态、提高采煤机的工作效率提供一种重要的技术手段.
Author 张强
刘峻铭
刘志恒
顾颉颖
田莹
AuthorAffiliation 辽宁工程技术大学机械工程学院,辽宁阜新,123000
AuthorAffiliation_xml – name: 辽宁工程技术大学机械工程学院,辽宁阜新,123000
Author_FL ZHANG Qiang
TIAN Ying
LIU Junming
GU Jieying
LIU Zhiheng
Author_FL_xml – sequence: 1
  fullname: ZHANG Qiang
– sequence: 2
  fullname: GU Jieying
– sequence: 3
  fullname: LIU Junming
– sequence: 4
  fullname: LIU Zhiheng
– sequence: 5
  fullname: TIAN Ying
Author_xml – sequence: 1
  fullname: 张强
– sequence: 2
  fullname: 顾颉颖
– sequence: 3
  fullname: 刘峻铭
– sequence: 4
  fullname: 刘志恒
– sequence: 5
  fullname: 田莹
BookMark eNrjYmDJy89LZWCQMzTQMzQ2MjLVz9JLzsvO1MtKTi7WMzIwNNczNDI0ZmHgNDAyNda1tLQ05mDgKi7OMjAwNjE2M-VksHk6f9eTXX1PN_Q_27zoaU_rkx19wf6-z5fOe767__neic93z3k-q-VZx6qXe_c_X7ziWe_8513bnjU0vljf9rRjNQ8Da1piTnEqL5TmZgh1cw1x9tD18Xf3dHb00S02NDAw0U1KSjQ3T7JINkyzTDUwSjVKSTK0MDdOSklMSku1TDEzNjQwMTK2sDQ0TUuxMElKtUw0skhMBRHGxsnm5mmmxtwMqhBzyxPz0hLz0uOz8kuL8oA2xueWVCQBvWlhYA7yEAAYlGDz
ClassificationCodes TD421.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13225/j.cnki.jccs.2017.1213
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Pick wear condition identification based on wavelet packet and SOM neural network
EndPage 2083
ExternalDocumentID mtxb201807034
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 辽宁省自然科学基金资助项目
  funderid: (51504121,51774161); (201602362)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
FIJ
GROUPED_DOAJ
IPNFZ
PSX
RIG
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1004-bba77b8c1f9e02e2db1873bdabfe9d63104238915fd84be9a28aea28a33c77f53
ISSN 0253-9993
IngestDate Thu May 29 04:05:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 截齿磨损
小波包分解
识别
采煤机
SOM神经网络
声发射信号
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1004-bba77b8c1f9e02e2db1873bdabfe9d63104238915fd84be9a28aea28a33c77f53
PageCount 7
ParticipantIDs wanfang_journals_mtxb201807034
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationTitle 煤炭学报
PublicationTitle_FL Journal of China Coal Society
PublicationYear 2018
Publisher 辽宁工程技术大学机械工程学院,辽宁阜新,123000
Publisher_xml – name: 辽宁工程技术大学机械工程学院,辽宁阜新,123000
SSID ssj0034365
ssib048394982
ssib023167597
ssib012291397
ssib051374103
ssib001105247
ssib046784615
Score 2.2431142
Snippet TD421.6; 为实现采煤机截割过程中截齿磨损状态的实时在线监测,采用声发射传感器对不同磨损程度截齿截割时的声发射信号进行采集,采用小波包分析方法分析声发射信号不同频带...
SourceID wanfang
SourceType Aggregation Database
StartPage 2077
Title 基于小波包与SOM神经网络的截齿磨损状态识别
URI https://d.wanfangdata.com.cn/periodical/mtxb201807034
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0253-9993
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0034365
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcGnrRQ_iJ36WHtzjq8nuJtkFL5u8PIpQPdhCbyWfaoUn2PbSk4JKEW3xJIhYUATRg4Ig0lL8M30v-i-c2aRJig_8uCyTzezsfGR3ZpfsLCGXXDdzBOZshVA56gjhwZhLHd5JWWrbufKiLMZ9yNlr7sy8uLrgLIyNv2j9tbS6Ek8nayPPlfyPVaEO7IqnZP_BsjVRqAAY7AslWBjKv7IxDR2qetTXNBRYyhBrfIvKHg1d6nOqGdbIgErH4EjAuXF9loYe1dA2RMD3DT4AXarsqkYFCCigKZCUlFRDLwpxfIOsgbg0r7rIA9RITX3X1AADQAea9Kh0DQMA--042OA7VAsDMKq7iAalLiloYG__WzAyBVRbFdBsLSBD2qZ-aABGpaoA5bYbQ-9KmsYcRQMUBcx3R6P0qPIMCzYtr8_b3xOxZf3_bPkVo4TQtV-yHhqZgYDRLCoIdO1XwoBGAACdgkZCI7b2DgisAmNFF5n3rVF0amTg3sjIglEMKJQDjQc0XSTFAogaLMtqzfgMRglE7LztnsosVtUw9Nq-xqouwMmqx_JGoN98Ik7Zxikm_Tu3p5eSBLPU2x7mFeFNFFD_mwlfeYw6RV8gxskhBu7Sau1VmDgbonLWrENtxjC7bP3MML2C0zyDM4Ywt4k7BUTlQjVJlRybQ2Br1SEUF9zcAVvrozraj5JcHimHOXLXz6P-zVZ0OHeMHK2WdVO6HKPHydjarRPkSCvZ50lyZbC1vbe9Mfi8OfzyZvD00d63DRiJxbvXxc5msfu82HlVvHw4XP_wc_d78fb98NlW8eTr8P6DH58eD9Y_niLzvXAumOlUd5d0ljEHYyeOI8-LZQLzXWaxjKWxLT0ep1GcZyp1YVEF6xipbCdPpYgzFTEZZVhwnnhe7vDTZKJ_t5-dIVO5G8FkymCdxnCDI1JuJFMhLZHxSFk8PUsmK9kXq7lpefGAEc_9CeE8OdyMogtkYuXeanYRYu2VeNLY_Rd0iZyb
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%B0%8F%E6%B3%A2%E5%8C%85%E4%B8%8ESOM%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E6%88%AA%E9%BD%BF%E7%A3%A8%E6%8D%9F%E7%8A%B6%E6%80%81%E8%AF%86%E5%88%AB&rft.jtitle=%E7%85%A4%E7%82%AD%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%BC%BA&rft.au=%E9%A1%BE%E9%A2%89%E9%A2%96&rft.au=%E5%88%98%E5%B3%BB%E9%93%AD&rft.au=%E5%88%98%E5%BF%97%E6%81%92&rft.date=2018-07-01&rft.pub=%E8%BE%BD%E5%AE%81%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81%E9%98%9C%E6%96%B0%2C123000&rft.issn=0253-9993&rft.volume=43&rft.issue=7&rft.spage=2077&rft.epage=2083&rft_id=info:doi/10.13225%2Fj.cnki.jccs.2017.1213&rft.externalDocID=mtxb201807034
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtxb%2Fmtxb.jpg