内镜下早期食管癌及癌前病变识别人工智能YOLOv51模型的建立及临床验证

目的:以人工智能深度学习的方法,构建基于YOLOv5l模型的内镜图像早期食管癌及癌前病变的识别模型,以提高内镜下早期食管癌及癌前病变的诊断水平。方法:收集2019年6月至2021年7月中国医学科学院肿瘤医院1 126例患者的白光成像(WLI)、窄带光成像(NBI)和卢戈液染色(LCE)的内镜食管图像13 009幅,包括低级别上皮内瘤变、高级别上皮内瘤变、限于黏膜层的食管鳞癌、良性食管病变及正常食管。通过计算机随机函数方法,分为训练集(1 025例患者的11 547幅图像)和验证集(101例患者的1 462幅图像)。以训练集训练、构建YOLOv5l模型,以验证集验证该模型,同时由2名高年资和2名...

Full description

Saved in:
Bibliographic Details
Published in中华肿瘤杂志 Vol. 44; no. 5; pp. 395 - 401
Main Authors 王士旭, 柯岩, 刘雨蒙, 刘思瑶, 宋世博, 贺舜, 张月明, 窦利州, 刘勇, 刘旭东, 伍海锐, 苏飞雄, 张凤英, 张玮, 王贵齐
Format Journal Article
LanguageChinese
Published 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院内镜科,北京 100021%国家癌症中心 中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科,深圳 518116 23.05.2022
Subjects
Online AccessGet full text
ISSN0253-3766
DOI10.3760/cma.j.cn112152-20211126-00877

Cover

Abstract 目的:以人工智能深度学习的方法,构建基于YOLOv5l模型的内镜图像早期食管癌及癌前病变的识别模型,以提高内镜下早期食管癌及癌前病变的诊断水平。方法:收集2019年6月至2021年7月中国医学科学院肿瘤医院1 126例患者的白光成像(WLI)、窄带光成像(NBI)和卢戈液染色(LCE)的内镜食管图像13 009幅,包括低级别上皮内瘤变、高级别上皮内瘤变、限于黏膜层的食管鳞癌、良性食管病变及正常食管。通过计算机随机函数方法,分为训练集(1 025例患者的11 547幅图像)和验证集(101例患者的1 462幅图像)。以训练集训练、构建YOLOv5l模型,以验证集验证该模型,同时由2名高年资和2名低年资内镜医师分别对验证集进行诊断,比较YOLOv5l模型与内镜医师的诊断结果。结果:在验证集中,YOLOv5l模型在WLI、NBI和LCE模式下诊断早期食管癌及癌前病变的准确度、灵敏度、特异度、阳性预测值(PPV)和阴性预测值(NPV)分别为96.9%、87.9%、98.3%、88.8%和98.1%, 98.6%、89.3%、99.5%、94.4%和98.2%,93.0%、77.5%、98.0%、92.6%和93.1%。NBI模式下的准确度高于WLI模式( P<0.05),LCE模式下的准确度低于WLI( P<0.05)。YOLOv5l模型在WLI、NBI和LCE模式下诊断早期食管癌及癌前病变的准确度与2位高年资内镜医师(分别为96.9%、98.8%和94.3%,97.5%、99.6%和91.9%;均 P>0.05)相当,但明显高于2位低年资内镜医师(分别为84.7%、92.9%和81.6%,88.3%、91.9%和81.2%;均 P<0.05)。 结论:所构建的YOLOv5l模型在内镜WLI、NBI和LCE模式下诊断早期食管癌及癌前病变中具有较高的准确度,可以辅助低年资内镜医师提高诊断水平、减少漏诊。
AbstractList 目的:以人工智能深度学习的方法,构建基于YOLOv5l模型的内镜图像早期食管癌及癌前病变的识别模型,以提高内镜下早期食管癌及癌前病变的诊断水平。方法:收集2019年6月至2021年7月中国医学科学院肿瘤医院1 126例患者的白光成像(WLI)、窄带光成像(NBI)和卢戈液染色(LCE)的内镜食管图像13 009幅,包括低级别上皮内瘤变、高级别上皮内瘤变、限于黏膜层的食管鳞癌、良性食管病变及正常食管。通过计算机随机函数方法,分为训练集(1 025例患者的11 547幅图像)和验证集(101例患者的1 462幅图像)。以训练集训练、构建YOLOv5l模型,以验证集验证该模型,同时由2名高年资和2名低年资内镜医师分别对验证集进行诊断,比较YOLOv5l模型与内镜医师的诊断结果。结果:在验证集中,YOLOv5l模型在WLI、NBI和LCE模式下诊断早期食管癌及癌前病变的准确度、灵敏度、特异度、阳性预测值(PPV)和阴性预测值(NPV)分别为96.9%、87.9%、98.3%、88.8%和98.1%, 98.6%、89.3%、99.5%、94.4%和98.2%,93.0%、77.5%、98.0%、92.6%和93.1%。NBI模式下的准确度高于WLI模式( P<0.05),LCE模式下的准确度低于WLI( P<0.05)。YOLOv5l模型在WLI、NBI和LCE模式下诊断早期食管癌及癌前病变的准确度与2位高年资内镜医师(分别为96.9%、98.8%和94.3%,97.5%、99.6%和91.9%;均 P>0.05)相当,但明显高于2位低年资内镜医师(分别为84.7%、92.9%和81.6%,88.3%、91.9%和81.2%;均 P<0.05)。 结论:所构建的YOLOv5l模型在内镜WLI、NBI和LCE模式下诊断早期食管癌及癌前病变中具有较高的准确度,可以辅助低年资内镜医师提高诊断水平、减少漏诊。
Abstract_FL Objective:To construct the diagnostic model of superficial esophageal squamous cell carcinoma (ESCC) and precancerous lesions in endoscopic images based on the YOLOv5l model by using deep learning method of artificial intelligence to improve the diagnosis of early ESCC and precancerous lesions under endoscopy.Methods:13, 009 endoscopic esophageal images of white light imaging (WLI), narrow band imaging (NBI) and lugol chromoendoscopy (LCE) were collected from June 2019 to July 2021 from 1, 126 patients at the Cancer Hospital, Chinese Academy of Medical Sciences, including low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia, ESCC limited to the mucosal layer, benign esophageal lesions and normal esophagus. By computerized random function method, the images were divided into a training set (11, 547 images from 1, 025 patients) and a validation set (1, 462 images from 101 patients). The YOLOv5l model was trained and constructed with the training set, and the model was validated with the validation set, while the validation set was diagnosed by two senior and two junior endoscopists, respectively, to compare the diagnostic results of YOLOv5l model and those of the endoscopists.Results:In the validation set, the accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the YOLOv5l model in diagnosing early ESCC and precancerous lesions in the WLI, NBI and LCE modes were 96.9%, 87.9%, 98.3%, 88.8%, 98.1%, and 98.6%, 89.3%, 99.5%, 94.4%, 98.2%, and 93.0%, 77.5%, 98.0%, 92.6%, 93.1%, respectively. The accuracy in the NBI model was higher than that in the WLI model ( P<0.05) and lower than that in the LCE model ( P<0.05). The diagnostic accuracies of YOLOv5l model in the WLI, NBI and LCE modes for the early ESCC and precancerous lesions were similar to those of the 2 senior endoscopists (96.9%, 98.8%, 94.3%, and 97.5%, 99.6%, 91.9%, respectively; P>0.05), but significantly higher than those of the 2 junior endoscopists (84.7%, 92.9%, 81.6% and 88.3%, 91.9%, 81.2%, respectively; P<0.05). Conclusion:The constructed YOLOv5l model has high accuracy in diagnosing early ESCC and precancerous lesions in endoscopic WLI, NBI and LCE modes, which can assist junior endoscopists to improve diagnosis and reduce missed diagnoses.
Author 张凤英
刘勇
张玮
王贵齐
刘旭东
苏飞雄
窦利州
宋世博
刘雨蒙
伍海锐
王士旭
刘思瑶
贺舜
柯岩
张月明
AuthorAffiliation 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院内镜科,北京 100021%国家癌症中心 中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科,深圳 518116
AuthorAffiliation_xml – name: 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院内镜科,北京 100021%国家癌症中心 中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科,深圳 518116
Author_FL Liu Yumeng
Liu Siyao
Song Shibo
Liu Yong
Su Feixiong
Wu Hairui
Wang Shixu
Zhang Wei
Liu Xudong
He Shun
Zhang Fengying
Dou Lizhou
Wang Guiqi
Ke Yan
Zhang Yueming
Author_FL_xml – sequence: 1
  fullname: Wang Shixu
– sequence: 2
  fullname: Ke Yan
– sequence: 3
  fullname: Liu Yumeng
– sequence: 4
  fullname: Liu Siyao
– sequence: 5
  fullname: Song Shibo
– sequence: 6
  fullname: He Shun
– sequence: 7
  fullname: Zhang Yueming
– sequence: 8
  fullname: Dou Lizhou
– sequence: 9
  fullname: Liu Yong
– sequence: 10
  fullname: Liu Xudong
– sequence: 11
  fullname: Wu Hairui
– sequence: 12
  fullname: Su Feixiong
– sequence: 13
  fullname: Zhang Fengying
– sequence: 14
  fullname: Zhang Wei
– sequence: 15
  fullname: Wang Guiqi
Author_xml – sequence: 1
  fullname: 王士旭
– sequence: 2
  fullname: 柯岩
– sequence: 3
  fullname: 刘雨蒙
– sequence: 4
  fullname: 刘思瑶
– sequence: 5
  fullname: 宋世博
– sequence: 6
  fullname: 贺舜
– sequence: 7
  fullname: 张月明
– sequence: 8
  fullname: 窦利州
– sequence: 9
  fullname: 刘勇
– sequence: 10
  fullname: 刘旭东
– sequence: 11
  fullname: 伍海锐
– sequence: 12
  fullname: 苏飞雄
– sequence: 13
  fullname: 张凤英
– sequence: 14
  fullname: 张玮
– sequence: 15
  fullname: 王贵齐
BookMark eNotUE1LAlEUfQuDzPwZLsfufW_ePGcZ0hcIbmrRJnnzVYmNkFTgLsooNVyFGZJIBJWQmyCZ6N_4ZvRfNFGbc-7ifFzOEkn4Vd8lJIOQZcKAFftIZstZ20ekyKlGgWJ8GhpATogESQLlTIuVxiJJ12qHFvAcF7qJIkn21FVjftefTlph9zXsD-ZPg-h9GPXaqtP8xZvbqNtQnfvZ-Epdj6ZBoD6fw14wu_jeLRaKpxzDl6F6bEUPl-oriEat2DadfKigOX9rz8bny2TBk5Wam_7nFNlZX9vOb2qF4sZWfrWg1RBAj3-TLqemIV1pIGWoSxCWzDHPAt32KJNouuhaunBcB6iJCAiezZnpmI6le4KlSOYv90z6nvT3S-XqybEfN5bqB_VKPAgFHhexHzcBeAE
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3760/cma.j.cn112152-20211126-00877
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Establishment and clinical validation of an artificial intelligence YOLOv51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure
EndPage 401
ExternalDocumentID zhzl202205004
GrantInformation_xml – fundername: 国家重点研发计划; 深圳市医疗卫生三名工程项目; National Key Research and Development Program of China; Sanming Project of Medicine in Shenzhen
  funderid: (2016YFC1302800、2016YFC0901402、2018YFC1313103); (SZSM201911008); (2016YFC1302800, 2016YFC0901402, 2018YFC1313103); (SZSM201911008)
GroupedDBID ---
-05
123
2B.
4A8
92F
92I
93N
ABDBF
ABJNI
ACGFS
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CIEJG
CW9
EOJEC
OBODZ
PSX
TCJ
TGQ
U1G
U5O
ID FETCH-LOGICAL-s1004-37ae5296aea612314a07ba83fb04cf23a19e1eb47ded02911010fc539d9db4f73
ISSN 0253-3766
IngestDate Thu May 29 04:03:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Precancerous lesions
诊断
食管肿瘤,早期
人工智能
Diagnosis
癌前病变
内镜
Artificial intelligence
Esophageal neoplasms, early
Endoscope
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1004-37ae5296aea612314a07ba83fb04cf23a19e1eb47ded02911010fc539d9db4f73
PageCount 7
ParticipantIDs wanfang_journals_zhzl202205004
PublicationCentury 2000
PublicationDate 2022-05-23
PublicationDateYYYYMMDD 2022-05-23
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-23
  day: 23
PublicationDecade 2020
PublicationTitle 中华肿瘤杂志
PublicationTitle_FL Chinese Journal of Oncology
PublicationYear 2022
Publisher 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院内镜科,北京 100021%国家癌症中心 中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科,深圳 518116
Publisher_xml – name: 国家癌症中心 国家肿瘤临床医学研究中心 中国医学科学院北京协和医学院肿瘤医院内镜科,北京 100021%国家癌症中心 中国医学科学院北京协和医学院肿瘤医院深圳医院内镜科,深圳 518116
SSID ssib058574917
ssib051368316
ssib007279245
ssib000995398
ssj0042033
ssib006576341
ssib001103529
Score 2.4235873
Snippet 目的:以人工智能深度学习的方法,构建基于YOLOv5l模型的内镜图像早期食管癌及癌前病变的识别模型,以提高内镜下早期食管癌及癌前病变的诊断水平。方法:收集2019年6月至2021年7月中国医学科学院肿瘤医院1 126例患者的白光成像(WLI)、窄带光成像(NBI)和卢戈液染色(LCE)的内镜食管图像13...
SourceID wanfang
SourceType Aggregation Database
StartPage 395
Title 内镜下早期食管癌及癌前病变识别人工智能YOLOv51模型的建立及临床验证
URI https://d.wanfangdata.com.cn/periodical/zhzl202205004
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3Na9RAFA_FingRRcVvenCOWzeTTDJznOxmKaL2olAvSrJJLKIr2NZDb-IH2io9SVVEERH8AL0IlhX_m-5u-1_43ss0SdvFz4sQwvAy8z5-Lx_vzc68tayTXta240TUa9KTKc5WJbVY2O2aH2cZllsRDhWrPnvOm7jgnp4SUyM7W5VVS3Oz8Xh7fui-kr_xKtDAr7hL9g88WzAFArTBv3AGD8P5t3zMQsGkx6RgoWJKMNVgocsCyWTAQo8pn2lFjQZTLeyjHWoAPWTaxoZSTDaIT4tJvZkCjSZRfBJBfZRkoWS6hXKRAu2AhGo8gBIAc0FCFVFAGYcFzYuTZyZvCRsvaEmyQd2QFAUBmkmXBgc0xkemeKlQi6wK8j6aKGCMJkVzbexqlG366yZxaDIZkh6cBWQ82KBdUrGJROQJhhUfZOwiQyMfENMFmM2yi4dAgmAczAHm8gqBgjCBSwI0FkQrztSwLh4tNMlBtlngVedgIH2vi1q-TZqeGoIMACKrwIGBV3FX7iV_k-VgFWAfOigEjiHDt4OyHWiB_IMcjCbTJFSD1i41FPH5idDKpUL6EIYEQElRaJfmprPyzS2mGxseJeQBVnOrbmFYDN9uYNG5KmLLM1To02JBoxSxSQ1jIP5wxSEaEP_snf8fKA8f7iB_dOGS87dgbudjQBCQCOR7ok1swoWDsYlXDaTyQq7mgyEqUZGT_4-uCbDdfPZya-yGq_Pghdu-Ho1fHW93bCx7w-F1z23c5VjD2pl-GbQWS4nnp-evcSoXQGWhRzkoBfHOqA6aQauSSCpRLXQKSQ9knmUi5wmIsyqJoY91Vcv1FsJ2POmUibSQwndpoiuP-V1ed2gt0wYsuyxmTDr1U4Noq2gnizpXKlnN-b3WHjMdMabzb8s-a2R-er91qXf_3vqTF6sri_3l9_0Xr9bfvBp8ej149qi3tIDnh48Hy_d6S0_XPt_vPfi42u32vr7tP-uu3flu3vL9d697LxcHz-_2vnUHHxdh2OrKl153Yf3Do7XPtw9YF1rh-cZEzfwPT20G64mCQVGKy3OiNMJiXbYb1f04kk4W1912xp3IVqmdxq6fpEmdQ_QMz17WBrwTlcRu5jsHrR2dG530kDXGk0QkkCMnieRuGkdRW6Z1yNizSCY-9_hh64TB47L5zs5c3uThI7_qcNTaXb6hj1k7Zm_Opcchb5yNT5ib4gf08z19
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%86%85%E9%95%9C%E4%B8%8B%E6%97%A9%E6%9C%9F%E9%A3%9F%E7%AE%A1%E7%99%8C%E5%8F%8A%E7%99%8C%E5%89%8D%E7%97%85%E5%8F%98%E8%AF%86%E5%88%AB%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BDYOLOv51%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%BB%BA%E7%AB%8B%E5%8F%8A%E4%B8%B4%E5%BA%8A%E9%AA%8C%E8%AF%81&rft.jtitle=%E4%B8%AD%E5%8D%8E%E8%82%BF%E7%98%A4%E6%9D%82%E5%BF%97&rft.au=%E7%8E%8B%E5%A3%AB%E6%97%AD&rft.au=%E6%9F%AF%E5%B2%A9&rft.au=%E5%88%98%E9%9B%A8%E8%92%99&rft.au=%E5%88%98%E6%80%9D%E7%91%B6&rft.date=2022-05-23&rft.pub=%E5%9B%BD%E5%AE%B6%E7%99%8C%E7%97%87%E4%B8%AD%E5%BF%83%E3%80%80%E5%9B%BD%E5%AE%B6%E8%82%BF%E7%98%A4%E4%B8%B4%E5%BA%8A%E5%8C%BB%E5%AD%A6%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%E3%80%80%E4%B8%AD%E5%9B%BD%E5%8C%BB%E5%AD%A6%E7%A7%91%E5%AD%A6%E9%99%A2%E5%8C%97%E4%BA%AC%E5%8D%8F%E5%92%8C%E5%8C%BB%E5%AD%A6%E9%99%A2%E8%82%BF%E7%98%A4%E5%8C%BB%E9%99%A2%E5%86%85%E9%95%9C%E7%A7%91%EF%BC%8C%E5%8C%97%E4%BA%AC%E3%80%80100021%25%E5%9B%BD%E5%AE%B6%E7%99%8C%E7%97%87%E4%B8%AD%E5%BF%83%E3%80%80%E4%B8%AD%E5%9B%BD%E5%8C%BB%E5%AD%A6%E7%A7%91%E5%AD%A6%E9%99%A2%E5%8C%97%E4%BA%AC%E5%8D%8F%E5%92%8C%E5%8C%BB%E5%AD%A6%E9%99%A2%E8%82%BF%E7%98%A4%E5%8C%BB%E9%99%A2%E6%B7%B1%E5%9C%B3%E5%8C%BB%E9%99%A2%E5%86%85%E9%95%9C%E7%A7%91%EF%BC%8C%E6%B7%B1%E5%9C%B3%E3%80%80518116&rft.issn=0253-3766&rft.volume=44&rft.issue=5&rft.spage=395&rft.epage=401&rft_id=info:doi/10.3760%2Fcma.j.cn112152-20211126-00877&rft.externalDocID=zhzl202205004
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhzl%2Fzhzl.jpg