面向土地覆盖精准分类的遥感特征参数优选方法

P237; 在显著气候变化叠加人类活动干扰的背景下,可持续的自然资源管理对于精准掌握土地覆盖信息的需求不断提升.为应对地表形态的复杂性、地物类型的多样性、遥感图像特征的非线性给传统遥感图像分类方法带来的挑战,本文基于随机森林Gini指数,提出了一种10%阈值决策的遥感特征参数优选方法,旨在筛选出最优的遥感特征参数组合,达到最佳土地覆盖分类效果.首先,选择光谱特征、纹理特征、温热特征、高程特征、主成分特征组成遥感影像堆栈.然后,设置多组决策树对特征贡献度进行交叉验证,并根据特征重要性的归一化均值确定特征排序.最后,设定阈值,筛选出符合要求的遥感特征参数,并迭代过程.选择覆盖江苏盐城自然保护区的S...

Full description

Saved in:
Bibliographic Details
Published in测绘学报 Vol. 53; no. 7; pp. 1401 - 1416
Main Authors 陈超, 梁锦涛, 杨刚, 孙伟伟, 龚绍军, 王建强
Format Journal Article
LanguageChinese
Published 浙江海洋大学海洋科学与技术学院,浙江舟山 316022%宁波大学地理与空间信息技术系,浙江宁波 315211%浙江海洋大学海洋科学与技术学院,浙江舟山 316022%浙江省水文地质工程地质大队,浙江宁波 315012 12.08.2024
苏州科技大学地理科学与测绘工程学院,江苏苏州 215009%中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074
Subjects
Online AccessGet full text
ISSN1001-1595
DOI10.11947/j.AGCS.2024.20230327

Cover

Abstract P237; 在显著气候变化叠加人类活动干扰的背景下,可持续的自然资源管理对于精准掌握土地覆盖信息的需求不断提升.为应对地表形态的复杂性、地物类型的多样性、遥感图像特征的非线性给传统遥感图像分类方法带来的挑战,本文基于随机森林Gini指数,提出了一种10%阈值决策的遥感特征参数优选方法,旨在筛选出最优的遥感特征参数组合,达到最佳土地覆盖分类效果.首先,选择光谱特征、纹理特征、温热特征、高程特征、主成分特征组成遥感影像堆栈.然后,设置多组决策树对特征贡献度进行交叉验证,并根据特征重要性的归一化均值确定特征排序.最后,设定阈值,筛选出符合要求的遥感特征参数,并迭代过程.选择覆盖江苏盐城自然保护区的Sentinel-2遥感图像开展试验,结果表明,本文方法筛选出的遥感特征参数代表性好,与CART、SVM、KNN和只使用波段信息的RF相比,分类结果地物边界清晰,类别属性准确,总体精度和Kappa系数分别为96.20%和0.955 6.本文研究能够为区域空间规划和可持续发展提供技术支持.
AbstractList P237; 在显著气候变化叠加人类活动干扰的背景下,可持续的自然资源管理对于精准掌握土地覆盖信息的需求不断提升.为应对地表形态的复杂性、地物类型的多样性、遥感图像特征的非线性给传统遥感图像分类方法带来的挑战,本文基于随机森林Gini指数,提出了一种10%阈值决策的遥感特征参数优选方法,旨在筛选出最优的遥感特征参数组合,达到最佳土地覆盖分类效果.首先,选择光谱特征、纹理特征、温热特征、高程特征、主成分特征组成遥感影像堆栈.然后,设置多组决策树对特征贡献度进行交叉验证,并根据特征重要性的归一化均值确定特征排序.最后,设定阈值,筛选出符合要求的遥感特征参数,并迭代过程.选择覆盖江苏盐城自然保护区的Sentinel-2遥感图像开展试验,结果表明,本文方法筛选出的遥感特征参数代表性好,与CART、SVM、KNN和只使用波段信息的RF相比,分类结果地物边界清晰,类别属性准确,总体精度和Kappa系数分别为96.20%和0.955 6.本文研究能够为区域空间规划和可持续发展提供技术支持.
Abstract_FL Sustainable natural resources management requires considerable accurate land cover information given the evident cli-mate change impacts and human disturbances on wetlands.It is characterized by the convergence of numerous materials and en-ergies,resulting in fragmented landscapes and frequent land cover changes.To address the challenges posed by the complexity of landforms,diversity of land cover types,and non-linearity of remote sensing image features in traditional remote sensing im-age classification methods,this paper proposes a feature parameter selection method based on the Gini index of random forests,with a 10%threshold decision.The aim is to identify the optimal combination of remote sensing feature parameters.Firstly,spectral features,texture features,thermal features,elevation features,and principal component features are selected to form a stack of remote sensing images.Then,multiple decision trees are set up to cross-validate the contributions of the features,and the feature ranking is determined based on the normalized mean importance of the features.Finally,a threshold is set to select the remote sensing feature parameters that meet the requirements,and the process is iterated.Experiments are conduc-ted using Sentinel-2 remote sensing images covering the Yancheng Nature Reserve in Jiangsu province.The results show that the remote sensing feature parameters selected by this method have good representativeness.Compared with CART,SVM,KNN,and RF methods that only use band information,the proposed method produces clearer boundaries and more accurate category attributes in the classification results,with an overall accuracy of 96.20%and a Kappa coefficient of 0.955 6.This re-search can provide technical support for regional spatial planning and sustainable development.
Author 孙伟伟
梁锦涛
王建强
杨刚
龚绍军
陈超
AuthorAffiliation 苏州科技大学地理科学与测绘工程学院,江苏苏州 215009%中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074;浙江海洋大学海洋科学与技术学院,浙江舟山 316022%宁波大学地理与空间信息技术系,浙江宁波 315211%浙江海洋大学海洋科学与技术学院,浙江舟山 316022%浙江省水文地质工程地质大队,浙江宁波 315012
AuthorAffiliation_xml – name: 苏州科技大学地理科学与测绘工程学院,江苏苏州 215009%中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074;浙江海洋大学海洋科学与技术学院,浙江舟山 316022%宁波大学地理与空间信息技术系,浙江宁波 315211%浙江海洋大学海洋科学与技术学院,浙江舟山 316022%浙江省水文地质工程地质大队,浙江宁波 315012
Author_FL GONG Shaojun
YANG Gang
CHEN Chao
LIANG Jintao
SUN Weiwei
WANG Jianqiang
Author_FL_xml – sequence: 1
  fullname: CHEN Chao
– sequence: 2
  fullname: LIANG Jintao
– sequence: 3
  fullname: YANG Gang
– sequence: 4
  fullname: SUN Weiwei
– sequence: 5
  fullname: GONG Shaojun
– sequence: 6
  fullname: WANG Jianqiang
Author_xml – sequence: 1
  fullname: 陈超
– sequence: 2
  fullname: 梁锦涛
– sequence: 3
  fullname: 杨刚
– sequence: 4
  fullname: 孙伟伟
– sequence: 5
  fullname: 龚绍军
– sequence: 6
  fullname: 王建强
BookMark eNotjzFLw0AYhm-oYK39CY6Oqd-XL9ckk5SgVSg4qHO5i3dqkRQMoqOVEu1UHVpEKwVB56pTUfprvMT-C1t0eZ_teXiXWC5qRoqxFYQSou-4a41SpRrslmywnfkQkO3mWB4B0ELu80VWjONjCcAdcjn5ebY-fXo2t3dmMDSD0c9rkj32s_eJuU7MTZK9fWYP7WnrJW0Ps87YTFqme5X2Rt9f99PLTtofpx-9ZbagxUmsiv8ssP3Njb1gy6rtVLeDSs2KZ3GylAIIhdIkQemyz0mGgPqAc8k9Gx0uFJIou-R4ioQQWkjwJCnU6JOnOVKBrf55z0WkRXRYbzTPTqNZsR4eXcj5YXABiX4BlXNimg
ClassificationCodes P237
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2024.20230327
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL Remote sensing parameters optimization for accurate land cover classifi-cation
EndPage 1416
ExternalDocumentID chxb202407013
GroupedDBID -01
2B.
4A8
5VS
5XA
5XB
7X2
92E
92I
93N
ABJNI
ACGFS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CW9
HCIFZ
IPNFZ
M0K
M7P
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PMFND
PSX
PYCSY
RIG
TCJ
TGP
U1G
U5K
ID FETCH-LOGICAL-s1003-ee00caef3b0ef6953bc01fd55b582145ae13a67348e3aaafab08b3e1f1938f513
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 特征优选
随机森林
土地覆盖分类
Gini指数
Gini index
random forest
feature recursive elimination
land cover classification
feature optimizing
递归特征消除
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1003-ee00caef3b0ef6953bc01fd55b582145ae13a67348e3aaafab08b3e1f1938f513
PageCount 16
ParticipantIDs wanfang_journals_chxb202407013
PublicationCentury 2000
PublicationDate 2024-08-12
PublicationDateYYYYMMDD 2024-08-12
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-12
  day: 12
PublicationDecade 2020
PublicationTitle 测绘学报
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2024
Publisher 浙江海洋大学海洋科学与技术学院,浙江舟山 316022%宁波大学地理与空间信息技术系,浙江宁波 315211%浙江海洋大学海洋科学与技术学院,浙江舟山 316022%浙江省水文地质工程地质大队,浙江宁波 315012
苏州科技大学地理科学与测绘工程学院,江苏苏州 215009%中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074
Publisher_xml – name: 苏州科技大学地理科学与测绘工程学院,江苏苏州 215009%中国地质大学(武汉)地球物理与空间信息学院,湖北武汉 430074
– name: 浙江海洋大学海洋科学与技术学院,浙江舟山 316022%宁波大学地理与空间信息技术系,浙江宁波 315211%浙江海洋大学海洋科学与技术学院,浙江舟山 316022%浙江省水文地质工程地质大队,浙江宁波 315012
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.4391055
Snippet P237; 在显著气候变化叠加人类活动干扰的背景下,可持续的自然资源管理对于精准掌握土地覆盖信息的需求不断提升.为应对地表形态的复杂性、地物类型的多样性、遥感图像特征的...
SourceID wanfang
SourceType Aggregation Database
StartPage 1401
Title 面向土地覆盖精准分类的遥感特征参数优选方法
URI https://d.wanfangdata.com.cn/periodical/chxb202407013
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssib005437539
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFG8IXLwYP4NfZA-OF7PYaTudmZNpl1ai0cQICTfSLq1cXBIXEuUkhqCc1APEKIbERM-oJ6Lhr3F35b_wvddhtyybiN68NLMzb-b93nvT9r3ZzhvLugpOsXQ8Ias0g7260NXUyXQ18VLfThN4K1Amprv3_Mlp7_aMmBka2Sl9tbS0mI7XlwfuK_kXq0Id2BV3yf6FZbuDQgWUwb5wBQvD9Vg2ZpFmeoIFDosE0zbTnAo1pmNTCG0WKRb4TPkskkyHTFMhdFgYIY2S1AQFZWhCzsKQiAOmPGShOAsEi3z8iSNDF81Cjb1gEEVMVcyUgzRaEFOPhQBDUXcb6bHJp15wdVlx5uWBW0yVMAjxBe7YUbBgApEj3wAAHEwNElojXpAshMZSi4-6QEBA4pnOQKLDMglqTBmRddBrIYYwssEedwvllRHHw6Ve3oujDXRdCMapH9WEkgoeSQVjAx55SKp-GokEhQkNDfAHq0RGBaBHRF9jQVyiIWWA1E5tEBJFQhI92pVfd7kP_hRzBA1RWI8MUkyifpTdSSRxfqkyJoALsyAgBBJlwKaYBTQgTpl4EG6JvMDCg-H2QwK44Phxgvu_qvkotcTRjZQ2aY7uDSUP3bRQX0xTQI-3n8SfhZBHaYzYGu8cYHF87dq8tO6PmdKqEHmIsuNSZNk2D2hZ8kJw0aTk0XKv2M581FvSniR3KbhVezCOtxBewKkt0nX0JaKvzz9JkQacBDwmfMQBPwoPy7lzvxzQQTilygEDvN9LCRGF50rRy0OMp114fi9hqeCudH3dXcDA6EjQ9ypGfLMHE4HfGASbtl428qTxsBQlTJ2yTprwvhIUz-rT1tDy_BlrNGjiH44Lj55WrlWoXKwnN89aN_c_fGy9ftPa2m5t7fz6vNZ5v9n5utd6sdZ6udb58r3zbnV_5VN7dbuzvtvaW2m9et7e2Pn54-3-s_X25m7728Y5azqOpmqTVXOmTbXJ8TPgLLPtepLlbmpnOUjqpnWb53NCpJixwBNJxt3Ex5RjmZskSZ6ktkrdjOcQaKsc9HPeGm4sNLJRq-LPKaFBZ2AU7eW5SDm4qlxIv56kSTrHL1hjRhez5p3VnD1kw4t_Irhkneg9Vy9bw4uPl7IrEIMtpmNk9t9tigqD
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E5%9C%9F%E5%9C%B0%E8%A6%86%E7%9B%96%E7%B2%BE%E5%87%86%E5%88%86%E7%B1%BB%E7%9A%84%E9%81%A5%E6%84%9F%E7%89%B9%E5%BE%81%E5%8F%82%E6%95%B0%E4%BC%98%E9%80%89%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%88%E8%B6%85&rft.au=%E6%A2%81%E9%94%A6%E6%B6%9B&rft.au=%E6%9D%A8%E5%88%9A&rft.au=%E5%AD%99%E4%BC%9F%E4%BC%9F&rft.date=2024-08-12&rft.pub=%E6%B5%99%E6%B1%9F%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E6%B5%B7%E6%B4%8B%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F%E8%88%9F%E5%B1%B1+316022%25%E5%AE%81%E6%B3%A2%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%86%E4%B8%8E%E7%A9%BA%E9%97%B4%E4%BF%A1%E6%81%AF%E6%8A%80%E6%9C%AF%E7%B3%BB%2C%E6%B5%99%E6%B1%9F%E5%AE%81%E6%B3%A2+315211%25%E6%B5%99%E6%B1%9F%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E6%B5%B7%E6%B4%8B%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F%E8%88%9F%E5%B1%B1+316022%25%E6%B5%99%E6%B1%9F%E7%9C%81%E6%B0%B4%E6%96%87%E5%9C%B0%E8%B4%A8%E5%B7%A5%E7%A8%8B%E5%9C%B0%E8%B4%A8%E5%A4%A7%E9%98%9F%2C%E6%B5%99%E6%B1%9F%E5%AE%81%E6%B3%A2+315012&rft.issn=1001-1595&rft.volume=53&rft.issue=7&rft.spage=1401&rft.epage=1416&rft_id=info:doi/10.11947%2Fj.AGCS.2024.20230327&rft.externalDocID=chxb202407013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg