基于残差网络模型的速溶全脂奶粉分散性与堆积密度检测方法

TS207.3; 针对传统的奶粉品质国际标准检测方法中存在的主观性和滞后性等问题,本研究提出了一种基于残差网络(residual network,ResNet)的奶粉分散性和堆积密度的快速分类检测方法.在本研究中,使用的数据集包括499张在10倍光学显微镜下拍摄的速溶全脂奶粉颗粒微观分布图像,这些图像来自10个不同的样本组.首先,按照国际标准方法检测这10组样本的分散性和堆积密度,进而基于测试结果划分不同的分散性和堆积密度级别.随后,利用这些微观图像对ResNet模型进行训练,以实现对不同样本的有效分类.最终,通过分类结果预测速溶全脂奶粉的分散性、松散密度和振实密度.此外,本研究还对比了Res...

Full description

Saved in:
Bibliographic Details
Published in食品科学 Vol. 45; no. 10; pp. 9 - 18
Main Authors 丁浩晗, 沈嵩, 谢祯奇, 崔晓晖, 王震宇
Format Magazine Article
LanguageChinese
Published 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122%江南大学未来食品科学中心,江苏无锡 214122 25.05.2024
武汉大学国家网络安全学院,湖北武汉 430072%嘉兴未来食品研究院,浙江嘉兴 314005
江南大学未来食品科学中心,江苏无锡 214122
Subjects
Online AccessGet full text
ISSN1002-6630
DOI10.7506/spkx1002-6630-20240129-262

Cover

Abstract TS207.3; 针对传统的奶粉品质国际标准检测方法中存在的主观性和滞后性等问题,本研究提出了一种基于残差网络(residual network,ResNet)的奶粉分散性和堆积密度的快速分类检测方法.在本研究中,使用的数据集包括499张在10倍光学显微镜下拍摄的速溶全脂奶粉颗粒微观分布图像,这些图像来自10个不同的样本组.首先,按照国际标准方法检测这10组样本的分散性和堆积密度,进而基于测试结果划分不同的分散性和堆积密度级别.随后,利用这些微观图像对ResNet模型进行训练,以实现对不同样本的有效分类.最终,通过分类结果预测速溶全脂奶粉的分散性、松散密度和振实密度.此外,本研究还对比了ResNet、EfficientNetV2和Swin Transformer等不同深度学习模型的预测效果.结果表明,基于ResNet 152的深度学习模型在预测速溶全脂奶粉的分散性、松散密度和振实密度方面表现最佳,其在测试集上的准确率分别达到97.50%、98.75%和95.00%.这些深度学习模型在奶粉品质检测中的出色性能不仅证明了该方法能够实时、准确地预测奶粉的分散性和堆积密度,同时也为奶粉品质的在线检测提供了新的技术途径.
AbstractList TS207.3; 针对传统的奶粉品质国际标准检测方法中存在的主观性和滞后性等问题,本研究提出了一种基于残差网络(residual network,ResNet)的奶粉分散性和堆积密度的快速分类检测方法.在本研究中,使用的数据集包括499张在10倍光学显微镜下拍摄的速溶全脂奶粉颗粒微观分布图像,这些图像来自10个不同的样本组.首先,按照国际标准方法检测这10组样本的分散性和堆积密度,进而基于测试结果划分不同的分散性和堆积密度级别.随后,利用这些微观图像对ResNet模型进行训练,以实现对不同样本的有效分类.最终,通过分类结果预测速溶全脂奶粉的分散性、松散密度和振实密度.此外,本研究还对比了ResNet、EfficientNetV2和Swin Transformer等不同深度学习模型的预测效果.结果表明,基于ResNet 152的深度学习模型在预测速溶全脂奶粉的分散性、松散密度和振实密度方面表现最佳,其在测试集上的准确率分别达到97.50%、98.75%和95.00%.这些深度学习模型在奶粉品质检测中的出色性能不仅证明了该方法能够实时、准确地预测奶粉的分散性和堆积密度,同时也为奶粉品质的在线检测提供了新的技术途径.
Abstract_FL To address the problems of the traditional international standard methods for milk powder quality detection such as subjectivity and lag,this study proposed a rapid method for the detection of the dispersibility and bulk density of milk powder based on residual network(ResNet).The dataset used in this study included 499 particle distribution images taken for 10 groups of instant whole milk powder samples under a 10 × optical microscope.Initially,these sample groups were tested for dispersibility and bulk density using the international standard methods,and classified into different levels of dispersibility and bulk density based on the test results.Subsequently,these microscopic images were used to train the ResNet to facilitate effective classification of different samples.Ultimately,the classification results were used to predict the dispersibility,loose density,and tapped density of instant whole milk powder.Additionally,this study compared the predictive performance of different deep learning models,including ResNet,EfficientNetV2,and Swin Transformer.The results indicated that the deep learning model based on ResNet 152 exhibited the best performance in predicting the dispersibility,loose density,and tapped density of instant whole milk powder,with accuracy rates of 97.50%,98.75%,and 95.00%,respectively for the test set.The exceptional performance of these deep learning models in milk powder quality detection not only proves that this method can predict the dispersibility and bulk density of milk powder in real time and accurately,but also provides a new technological approach for online quality detection of milk powder.
Author 沈嵩
丁浩晗
崔晓晖
谢祯奇
王震宇
AuthorAffiliation 江南大学未来食品科学中心,江苏无锡 214122;江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122%江南大学未来食品科学中心,江苏无锡 214122;武汉大学国家网络安全学院,湖北武汉 430072%嘉兴未来食品研究院,浙江嘉兴 314005
AuthorAffiliation_xml – name: 江南大学未来食品科学中心,江苏无锡 214122;江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122%江南大学未来食品科学中心,江苏无锡 214122;武汉大学国家网络安全学院,湖北武汉 430072%嘉兴未来食品研究院,浙江嘉兴 314005
Author_FL WANG Zhenyu
SHEN Song
XIE Zhenqi
DING Haohan
CUI Xiaohui
Author_FL_xml – sequence: 1
  fullname: DING Haohan
– sequence: 2
  fullname: SHEN Song
– sequence: 3
  fullname: XIE Zhenqi
– sequence: 4
  fullname: CUI Xiaohui
– sequence: 5
  fullname: WANG Zhenyu
Author_xml – sequence: 1
  fullname: 丁浩晗
– sequence: 2
  fullname: 沈嵩
– sequence: 3
  fullname: 谢祯奇
– sequence: 4
  fullname: 崔晓晖
– sequence: 5
  fullname: 王震宇
BookMark eNo9kMtKw0AARWdRwVr7E4LL6Mwk81pK8QUFEXRdJpNEfJCKQXQZpBYlUHBRFyJWKdquWlCsGvFvOhP9C1sVV3dx4Z7LmQK5sBr6AMwgOMcIpPPR_u4xghBblNrQwhA7EGFhYYpzIP9fTIJiFG270EECORyxPFjXrXSYNkwv0S-97OMie7823Tt9k2RXta-4ZdKBPu1-1k70_SB7PNdnddNsm7gzfG3o23rW6et-XacPph2b58Rcvpmn5jSYCORe5Bf_sgA2lxY3SitWeW15tbRQtqKfO4p5Hvc5x1BRYiNIlEcRQr7wbGkTyRV3CHWEDARhrsCKSOQp7jImic9VwOwCmP3dPZJhIMOtyk718CAcEStjF2MDIw7E9jdV5HEY
ClassificationCodes TS207.3
ContentType Magazine Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7506/spkx1002-6630-20240129-262
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Detection of Dispersibility and Bulk Density of Instant Whole Milk Powder Based on Residual Network
EndPage 18
ExternalDocumentID spkx202410002
GrantInformation_xml – fundername: (国家重点研发计划); (中央高校基本科研业务费专项资金资助项目); (教育部工程研究中心开放基金)
  funderid: (国家重点研发计划); (中央高校基本科研业务费专项资金资助项目); (教育部工程研究中心开放基金)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1002-c7dd8e8820c653105cd6111e9d3a35a8c845649af957b92c5a1dc8b77a5e8cf73
ISSN 1002-6630
IngestDate Thu May 29 04:00:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 堆积密度
deep learning
instant whole milk powder
bulk density
深度学习
dispersibility
速溶全脂奶粉
分散性
residual network
残差网络
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1002-c7dd8e8820c653105cd6111e9d3a35a8c845649af957b92c5a1dc8b77a5e8cf73
PageCount 10
ParticipantIDs wanfang_journals_spkx202410002
PublicationCentury 2000
PublicationDate 2024-05-25
PublicationDateYYYYMMDD 2024-05-25
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-25
  day: 25
PublicationDecade 2020
PublicationTitle 食品科学
PublicationTitle_FL Food Science
PublicationYear 2024
Publisher 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122%江南大学未来食品科学中心,江苏无锡 214122
武汉大学国家网络安全学院,湖北武汉 430072%嘉兴未来食品研究院,浙江嘉兴 314005
江南大学未来食品科学中心,江苏无锡 214122
Publisher_xml – name: 江南大学未来食品科学中心,江苏无锡 214122
– name: 武汉大学国家网络安全学院,湖北武汉 430072%嘉兴未来食品研究院,浙江嘉兴 314005
– name: 江南大学人工智能与计算机学院,江苏无锡 214122%江南大学人工智能与计算机学院,江苏无锡 214122%江南大学未来食品科学中心,江苏无锡 214122
SSID ssib041914817
ssib048970456
ssj0000579004
ssib001105556
ssib051376496
Score 1.4351395
Snippet TS207.3; 针对传统的奶粉品质国际标准检测方法中存在的主观性和滞后性等问题,本研究提出了一种基于残差网络(residual network,ResNet)的奶粉分散性和堆积密度的快速分类检...
SourceID wanfang
SourceType Aggregation Database
StartPage 9
Title 基于残差网络模型的速溶全脂奶粉分散性与堆积密度检测方法
URI https://d.wanfangdata.com.cn/periodical/spkx202410002
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V3Na9RQEA-lvejFb_wsPfi8SDQf7_OYbbMUQUFoobeSTbIKwiq2BempSC1KoeChHkSsUrQ9taBYdcX_psnqf-HMJOmmomg9eglv5838MvN-2ey8bN48y7qolJJtydt24iXK5m4K98GkndjSpHHkOLE2Ea5Gvn5Djk_ya1NiamDoUu2tpbnZ1pV4_pfrSv6FVZABr7hK9gDM7oGCANrALxyBYTj-FccsFMw0WSNgIcejDlkoWRAy3cCuhsJ2qFhjjBmXGg1mRklHs8Al80JZMQPmnIWGXn1oog4ANiTqaIH6oUYF7aEkENQFgB7ThnSgV6KVgV4fG4ATKHJMk2Mgd0hHoTxokqRJEoHnCsgcbMEQzy7IMQCEtiGJz4qdMqtkGr0FfUNQBgzdEtxQaMEYYFYXVOWIW2IHBGkMM6qvIikeTQ6hSr9HswaE4xG-qJwHD2vGYMOZ4RWsXzVk_cGKx_GdgGIRNn0V6KRuGYMGnhRBcxq7MoaSXaS5IFWU2CiBmHwkuD_QGlkPirEICVAi64V5CWjQHOLxRmsOaBxxTdyDFbCFauCJe9lzueuBtvgv3aXzBQE1xsjdP19XZQDQxiCbGNWBnKslA5gtQEbu1LOFovhpdVd0ar_9ppZEFjnFz-kJZOe0oeq9Ow_2sG289PBpsO2Vacn-8u-ojCr4PxykmkMeZC9u7dERTXtwl9t-TSyONRt1_7EF10bhzK36LFzIKnhZZrPYA0EZh3Za3XOrqM-MDl_9vbu00LHTjjq3ajn5xFHrSFUcfyQobo3HrIH528etw7Uaqyesm9lad7e7km8tZx-3el-f9r68yDdfZy-Xe88Xvy-s5d2d7NHmt8WH2Zud3rsn2eOlfHU9X9jY_bSSvVrqbWxn20tZ922-vpB_WM6ffc7fr560JpvhxOi4Xe4jY8-Q37FKEp1qmOvEElIOR8SJhBQvNYkf-SLSscaaWiZqG6FaxotF5CaxbikViVTHbeWfsgY7dzvpaWuEp4lwsUYnFy3ueDKKlYARSUxbSpho-mes4XJEpsvfiZnpfQye_ZPCOetQ_2Z03hqcvT-XXoB5z2xrmEj_AaZq9cQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%AE%8B%E5%B7%AE%E7%BD%91%E7%BB%9C%E6%A8%A1%E5%9E%8B%E7%9A%84%E9%80%9F%E6%BA%B6%E5%85%A8%E8%84%82%E5%A5%B6%E7%B2%89%E5%88%86%E6%95%A3%E6%80%A7%E4%B8%8E%E5%A0%86%E7%A7%AF%E5%AF%86%E5%BA%A6%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E9%A3%9F%E5%93%81%E7%A7%91%E5%AD%A6&rft.au=%E4%B8%81%E6%B5%A9%E6%99%97&rft.au=%E6%B2%88%E5%B5%A9&rft.au=%E8%B0%A2%E7%A5%AF%E5%A5%87&rft.au=%E5%B4%94%E6%99%93%E6%99%96&rft.date=2024-05-25&rft.pub=%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122%25%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122%25%E6%B1%9F%E5%8D%97%E5%A4%A7%E5%AD%A6%E6%9C%AA%E6%9D%A5%E9%A3%9F%E5%93%81%E7%A7%91%E5%AD%A6%E4%B8%AD%E5%BF%83%2C%E6%B1%9F%E8%8B%8F%E6%97%A0%E9%94%A1+214122&rft.issn=1002-6630&rft.volume=45&rft.issue=10&rft.spage=9&rft.epage=18&rft_id=info:doi/10.7506%2Fspkx1002-6630-20240129-262&rft.externalDocID=spkx202410002
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fspkx%2Fspkx.jpg