基于LightGBM机器学习算法的江西气温短期预报模型研究

P456.9; 为进一步提高站点气温的预报精度,增强对极端气温的预报能力,本研究利用2017-2019年江西省91个国家站地面观测数据和ECMWF模式高空和地面预报数据,基于LightGBM机器学习算法和MOS预报框架,建立了江西省24 h国家站日最高(低)气温预报模型.2020年评估结果表明:LightGBM模型日最高(低)气温预报和观测变化趋势一致,年平均预报效果优于ECMWF、CMA-SH9、CMA-GFS三家数值模式、RF和SVM两种机器学习产品以及主观订正产品.从预报误差的时空分布来看,模型冬、春季日最高(低)气温预报误差略大于夏、秋季;日最高气温预报误差呈现"南大北小、周...

Full description

Saved in:
Bibliographic Details
Published in高原气象 Vol. 43; no. 6; pp. 1520 - 1535
Main Authors 孙康慧, 肖安, 夏侯杰
Format Journal Article
LanguageChinese
Published 江西省气象台 江西省气象局天气预报开放实验室,江西 南昌 330096 28.12.2024
Subjects
Online AccessGet full text
ISSN1000-0534
DOI10.7522/j.issn.1000-0534.2024.00035

Cover

Abstract P456.9; 为进一步提高站点气温的预报精度,增强对极端气温的预报能力,本研究利用2017-2019年江西省91个国家站地面观测数据和ECMWF模式高空和地面预报数据,基于LightGBM机器学习算法和MOS预报框架,建立了江西省24 h国家站日最高(低)气温预报模型.2020年评估结果表明:LightGBM模型日最高(低)气温预报和观测变化趋势一致,年平均预报效果优于ECMWF、CMA-SH9、CMA-GFS三家数值模式、RF和SVM两种机器学习产品以及主观订正产品.从预报误差的时空分布来看,模型冬、春季日最高(低)气温预报误差略大于夏、秋季;日最高气温预报误差呈现"南大北小、周边大于中心"的空间分布特征,日最低气温则与之大致相反.从重要天气过程来看,在高温过程中,LightGBM模型在七种产品中预报效果最优;在强冷空气过程中,LightGBM模型预报效果仍优于三家数值模式产品和另外两种机器学习模型,但日最低气温预报效果不如主观订正产品.针对强冷空气过程中低温预报误差进行简单经验订正后,模型低温预报效果与主观订正产品接近.模型重要性分析显示临近地面观测特征对模型建立也有较大贡献,该结果可以为模式改进和气温预报产品研发提供参考.目前,Light-GBM模型气温预报产品已应用于江西省气象业务.
AbstractList P456.9; 为进一步提高站点气温的预报精度,增强对极端气温的预报能力,本研究利用2017-2019年江西省91个国家站地面观测数据和ECMWF模式高空和地面预报数据,基于LightGBM机器学习算法和MOS预报框架,建立了江西省24 h国家站日最高(低)气温预报模型.2020年评估结果表明:LightGBM模型日最高(低)气温预报和观测变化趋势一致,年平均预报效果优于ECMWF、CMA-SH9、CMA-GFS三家数值模式、RF和SVM两种机器学习产品以及主观订正产品.从预报误差的时空分布来看,模型冬、春季日最高(低)气温预报误差略大于夏、秋季;日最高气温预报误差呈现"南大北小、周边大于中心"的空间分布特征,日最低气温则与之大致相反.从重要天气过程来看,在高温过程中,LightGBM模型在七种产品中预报效果最优;在强冷空气过程中,LightGBM模型预报效果仍优于三家数值模式产品和另外两种机器学习模型,但日最低气温预报效果不如主观订正产品.针对强冷空气过程中低温预报误差进行简单经验订正后,模型低温预报效果与主观订正产品接近.模型重要性分析显示临近地面观测特征对模型建立也有较大贡献,该结果可以为模式改进和气温预报产品研发提供参考.目前,Light-GBM模型气温预报产品已应用于江西省气象业务.
Abstract_FL In order to achieve further improvement in the forecast accuracy of station temperatures and enhance the forecast capability for extreme temperatures,this study establishes a 24-hour national station daily maximum(minimum)temperature forecast model for Jiangxi Province based on the LightGBM machine-learning algo-rithm and the MOS forecast framework by using the surface observation data of 91 national stations in Jiangxi Province and the upper-air and surface forecast data of the ECMWF model from 2017 to 2019.The results of the 2020 evaluation show that the LightGBM model daily maximum(minimum)temperature forecast is consistent with the observed trend,and the annual average forecast is better than that of three numerical models,ECMWF,CMA-SH9 and CMA-GFS,two machine learning products,RF and SVM,and subjective revision products.In terms of the spatial and temporal distribution of forecast errors,the model's daily maximum(minimum)tempera-ture forecast errors in winter and spring are slightly larger than those in summer and autumn;the daily maximum temperature forecast errors show the spatial distribution characteristics of"larger in the south and smaller in the north,and larger in the periphery than in the centre",while the opposite is true for the daily minimum tempera-tures.In terms of important weather processes,the LightGBM model has the best prediction effect among the seven products in the high temperature process;in the strong cold air process,the LightGBM model is still better than the three numerical model products and the other two machine-learning models,but the prediction effect of the daily minimum temperature is not as good as that of the subjective revision products.After a simple empirical correction for the low-temperature forecast error in the strong cold air process,the model low-temperature fore-cast effect is close to that of the subjective revision product.The model significance analysis shows that the re-cent surface observation features also contribute to the model construction,and the results can be used as a refer-ence for model improvement and temperature forecast product development.At present,the LightGBM model temperature forecast products have been applied to meteorological operations in Jiangxi Province.
Author 夏侯杰
肖安
孙康慧
AuthorAffiliation 江西省气象台 江西省气象局天气预报开放实验室,江西 南昌 330096
AuthorAffiliation_xml – name: 江西省气象台 江西省气象局天气预报开放实验室,江西 南昌 330096
Author_FL XIAO An
SUN Kanghui
XIA Houjie
Author_FL_xml – sequence: 1
  fullname: SUN Kanghui
– sequence: 2
  fullname: XIAO An
– sequence: 3
  fullname: XIA Houjie
Author_xml – sequence: 1
  fullname: 孙康慧
– sequence: 2
  fullname: 肖安
– sequence: 3
  fullname: 夏侯杰
BookMark eNo9j89Kw0AYxPdQwVr7FOIx8dsvm2Zz1KJRiHjRc9n8NUVSNIp670nBU0WUYqpQaQ8VRRDNxZdpNvoWRhRPw8zhNzNzpBJ3Yp-QBQqqoSMutdUoSWKVAoACusZUBGRq6TS9Qqr_8SypJ0nkACDqHE1WJVaeZtPswo7C3UNrZVP2s_x6lE8epu-D4vFKvlwWN135nH4OP-RTT76Ni3Qi--nXfVeeDeXoLr89Lwa9Yvw6T2YCsZf49T-tkZ211e3mumJvWRvNZVtJyhGoUIoOMyggbzicUz9A8F3dBYdS3-OmhyC4IThzkCIKjfsB556JzEA38DQmtBpZ_OUeizgQcdhqd44O4rKxFZ7un_y8hgZQ1L4B2nhngQ
ClassificationCodes P456.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7522/j.issn.1000-0534.2024.00035
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
DocumentTitle_FL Study on Short Term Temperature Forecast Model in Jiangxi Province based on LightGBM Machine Learning Algorithm
EndPage 1535
ExternalDocumentID gyqx202406012
GrantInformation_xml – fundername: (华东区域气象科技协同创新基金项目); (江西省气象局重点项目)
  funderid: (华东区域气象科技协同创新基金项目); (江西省气象局重点项目)
GroupedDBID -01
123
2B.
4A8
5XA
5XB
92E
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CCEZO
CCVFK
CW9
GROUPED_DOAJ
PSX
TCJ
TGP
U1G
U5K
UY8
ID FETCH-LOGICAL-s1002-112b4710286b881ef20ec5c0b11ed89d20a87a84b2122a38ef88d92472cfd34a3
ISSN 1000-0534
IngestDate Thu May 29 04:08:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords temperature forecast
预报效果评估
机器学习
evaluation of prediction result
ECMWF
LightGBM
气温预报
machine learning
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1002-112b4710286b881ef20ec5c0b11ed89d20a87a84b2122a38ef88d92472cfd34a3
PageCount 16
ParticipantIDs wanfang_journals_gyqx202406012
PublicationCentury 2000
PublicationDate 2024-12-28
PublicationDateYYYYMMDD 2024-12-28
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-28
  day: 28
PublicationDecade 2020
PublicationTitle 高原气象
PublicationTitle_FL Plateau Meteorology
PublicationYear 2024
Publisher 江西省气象台 江西省气象局天气预报开放实验室,江西 南昌 330096
Publisher_xml – name: 江西省气象台 江西省气象局天气预报开放实验室,江西 南昌 330096
SSID ssib002258294
ssj0039535
ssib051376543
ssib000862561
Score 2.4174001
Snippet P456.9; 为进一步提高站点气温的预报精度,增强对极端气温的预报能力,本研究利用2017-2019年江西省91个国家站地面观测数据和ECMWF模式高空和地面预报数据,基于LightGBM机器学习算法和MOS预报框架,建立了江西省24...
SourceID wanfang
SourceType Aggregation Database
StartPage 1520
Title 基于LightGBM机器学习算法的江西气温短期预报模型研究
URI https://d.wanfangdata.com.cn/periodical/gyqx202406012
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKgVxIv4ifWjLOh4KbvmY5LMHJNstkVcTy30VpLdbBVki_0A7bknBU8VUYpbhUp7qCiCaC_-BP9EN6v_wvfeTrMpW9R6CbMvb95nZt97k8wMYzc9qAkatpBlKB7csrDTuCyV2SormSgHTxVIW1go1u-5UzPizqwzO3LiR-GrpZXlpNJYPXJdyf94FWDgV1wlewzP5kQBAG3wL1zBw3D9Jx_zyOGqxgOfRwKvMrqLtfZkUOeRy1VIdwBFcV9iw69y3yVcgBg88rgfceUhcmBz5SBEARlBEBNpR5L7Dg9qBDG46t8CoCLkGtLs80JkIGvp7tLHjtAA1r5JYkRcBsS0T8dDIoFbTI-JQsAVSSsjopnzlSiSnz8iWiFQDhqgaEB6SAB6AxTJpcWVS7jAXh3qDGl0jawRcZ8YqSrwKs6DWLTbol5Xjk_uUYbxUHtpDktKSoB7jIljd4OGNLSQaOocZ9jCgBwSsosIoEtfV7A2IoM3Qw0BUlY4LMkEiVnVzwGYXoYTto1FZyFg0c4Ajp4Q1hGtv_GVHrnF8ATJmlFIdSDaOUeFUQ-ScgqjyKKSs6ig2Sv08nmQPeTfdM4_efQYEXCDH8iJTloeJLOFOY6D-vnQQmrLkdYgIDgmhDtH5KmUrRw6ITeX4BS7ocW7_QfhaP1duxW35wup4vRZdkbXeCW_P2DPsZHV--fZWB3K04VFeotVulUKHz6AWpF-XWCT3c7e_t7zg8Gbbex1X213d9_vf9vsfXiZfX7Re72Wfer83PqefVzPvu70OrvZRufXu7Xs6Va2_bb75llvc7238-Uim6lF0-FUWZ9wUl4y6VQh00oE5fhuIqWZtiwjbTgNIzHNtClV0zJi6cVSJJBgWrEt05aUTWUJz2q0mraI7UtstL3QTi-zUiNWAooHG_onIklc3EjTbpoumtxMbDHGxrVR5vQ_2NLcIZdd-RvCVXZ6MO6usdHlxZX0OmTky8k4efk3soymvw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELightGBM%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AE%97%E6%B3%95%E7%9A%84%E6%B1%9F%E8%A5%BF%E6%B0%94%E6%B8%A9%E7%9F%AD%E6%9C%9F%E9%A2%84%E6%8A%A5%E6%A8%A1%E5%9E%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E9%AB%98%E5%8E%9F%E6%B0%94%E8%B1%A1&rft.au=%E5%AD%99%E5%BA%B7%E6%85%A7&rft.au=%E8%82%96%E5%AE%89&rft.au=%E5%A4%8F%E4%BE%AF%E6%9D%B0&rft.date=2024-12-28&rft.pub=%E6%B1%9F%E8%A5%BF%E7%9C%81%E6%B0%94%E8%B1%A1%E5%8F%B0+%E6%B1%9F%E8%A5%BF%E7%9C%81%E6%B0%94%E8%B1%A1%E5%B1%80%E5%A4%A9%E6%B0%94%E9%A2%84%E6%8A%A5%E5%BC%80%E6%94%BE%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%A5%BF+%E5%8D%97%E6%98%8C+330096&rft.issn=1000-0534&rft.volume=43&rft.issue=6&rft.spage=1520&rft.epage=1535&rft_id=info:doi/10.7522%2Fj.issn.1000-0534.2024.00035&rft.externalDocID=gyqx202406012
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fgyqx%2Fgyqx.jpg