Image Enhancement ANPSO Processing Technology Based on Improved Particle Swarm Optimization Algorithm

To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is proposed. This algorithm integrates Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) using natural inspiration and chaos theory to...

Full description

Saved in:
Bibliographic Details
Published inIAENG international journal of computer science Vol. 51; no. 11; p. 1781
Main Authors You, Zhangping, Yi, Dajian, Fang, Zheng, Zhang, Wenhui
Format Journal Article
LanguageEnglish
Published Hong Kong International Association of Engineers 01.11.2024
Subjects
Online AccessGet full text
ISSN1819-656X
1819-9224

Cover

Abstract To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is proposed. This algorithm integrates Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) using natural inspiration and chaos theory to enhance image quality. By employing a nonlinear random incremental method, it designs adaptive inertia weights to improve global search capabilities and stability. Furthermore, based on the pheromone release and path optimization mechanisms of the ant colony algorithm, it enhances the information transmission mechanism in PSO, allowing for more efficient information sharing among particles and strengthening cooperative search abilities. Experimental comparisons with Genetic Algorithm (GA), ACO, and PSO demonstrate that ANPSO improves Peak Signal-toNoise Ratio (PSNR), Structural Similarity Index (SSIM), and algorithm convergence by 8.3%, 7.6%, and 9.7%, respectively. These results highlight the significant performance advantages of ANPSO in image enhancement tasks.
AbstractList To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is proposed. This algorithm integrates Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) using natural inspiration and chaos theory to enhance image quality. By employing a nonlinear random incremental method, it designs adaptive inertia weights to improve global search capabilities and stability. Furthermore, based on the pheromone release and path optimization mechanisms of the ant colony algorithm, it enhances the information transmission mechanism in PSO, allowing for more efficient information sharing among particles and strengthening cooperative search abilities. Experimental comparisons with Genetic Algorithm (GA), ACO, and PSO demonstrate that ANPSO improves Peak Signal-toNoise Ratio (PSNR), Structural Similarity Index (SSIM), and algorithm convergence by 8.3%, 7.6%, and 9.7%, respectively. These results highlight the significant performance advantages of ANPSO in image enhancement tasks.
Author You, Zhangping
Zhang, Wenhui
Yi, Dajian
Fang, Zheng
Author_xml – sequence: 1
  givenname: Zhangping
  surname: You
  fullname: You, Zhangping
– sequence: 2
  givenname: Dajian
  surname: Yi
  fullname: Yi, Dajian
– sequence: 3
  givenname: Zheng
  surname: Fang
  fullname: Fang, Zheng
– sequence: 4
  givenname: Wenhui
  surname: Zhang
  fullname: Zhang, Wenhui
BookMark eNotjktLw0AUhQepYK39DwOuA_PIY7KMpWqhmECzcFfuTG4ekszEZKrorzdgV-dbfJxz7snKOos3ZM0VT4NUiHB15TiK3-_Idp47zcIwkUpFck3wMECDdG9bsAYHtJ5mb8Upp8XkDC6ybWiJprWud80PfYIZK-osPQzj5L4WLmDynemRnr5hGmg--m7ofsF3i5T1jZs63w4P5LaGfsbtNTekfN6Xu9fgmL8cdtkxGFPlg0pDanQqklqDwERyiLiueMhSKbSMlNYyUVrVigsjmIJKRAlndQRYxWCkkRvy-F-7fPu84OzPH-4y2WXxLLlIYsUk4_IPkblWrQ
ContentType Journal Article
Copyright Copyright International Association of Engineers Nov 1, 2024
Copyright_xml – notice: Copyright International Association of Engineers Nov 1, 2024
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1819-9224
GroupedDBID .4S
.DC
2WC
5VS
7SC
8FD
AAKPC
ADMLS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EDO
EOJEC
I-F
JQ2
KQ8
L7M
L~C
L~D
MK~
ML~
OBODZ
OK1
OVT
P2P
TR2
TUS
ID FETCH-LOGICAL-p98t-dba9cb927fba2e731a51bd140932b358bb378b8f812c208ad25710f5aed6ac3c3
ISSN 1819-656X
IngestDate Mon Jun 30 14:37:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p98t-dba9cb927fba2e731a51bd140932b358bb378b8f812c208ad25710f5aed6ac3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3127680301
PQPubID 2049582
ParticipantIDs proquest_journals_3127680301
PublicationCentury 2000
PublicationDate 20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241101
  day: 01
PublicationDecade 2020
PublicationPlace Hong Kong
PublicationPlace_xml – name: Hong Kong
PublicationTitle IAENG international journal of computer science
PublicationYear 2024
Publisher International Association of Engineers
Publisher_xml – name: International Association of Engineers
SSID ssib044738853
ssj0070001
Score 2.3008766
Snippet To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is...
SourceID proquest
SourceType Aggregation Database
StartPage 1781
SubjectTerms Adaptive algorithms
Ant colony optimization
Chaos theory
Genetic algorithms
Image enhancement
Image quality
Particle swarm optimization
Title Image Enhancement ANPSO Processing Technology Based on Improved Particle Swarm Optimization Algorithm
URI https://www.proquest.com/docview/3127680301
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1819-9224
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0070001
  issn: 1819-656X
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1819-9224
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0070001
  issn: 1819-656X
  databaseCode: ADMLS
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1819-9224
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044738853
  issn: 1819-656X
  databaseCode: M~E
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6PfECjIu4DOQHxEsUFMdJ7TwWlLKh0U5aJipeKjtx1iGalpIKiYf9gv3oHTt24wmEgBcrcqIoyvl0Lp_PBaFXlazKoUzqUKSpgACFqVDGXIYVyVKm6qGEVWdbTIZH58mHWTobDK69rKVtK9-UP39bV_I_UoU9kKuukv0Hye5eChtwDfKFFSQM61_J-HipM27yZqFFZ071R5PTs6nL_tcsQE-dB2_BYFX6cKAjEuD61L4zOPshNstgCupjaesyg9HXi9Xmsl0sfff1eJRP3psWEz2L6PWeKO2IiMDaVU-lmEMQTU6vna3U-7bK_YuH0bElsD8vVP_gjtb-pJrF9tKnKuLE1uztwtdbX-fBzyRR2vaLHkUJzodOzTGTDsFW9XtZ3NVdOw1uW9ZapBJPHxPWDYS53Wh7Mp2Pz09O5kU-K16vv4V6Bpk-q7cDWfbQHiV6GsbHq9zppiRhlBvXprPyTDvHOph33_iLLTcOSnEf3bWRBR51Ij1AA9U8QPfc1A5slfhDpAxqsIcabFCDe9TgHjXYoAavGuxQgx1qsEEN9lGDd6h5hIpxXrw7Cu2wjXCd8TaspMhKmcWsliJWjBKRElnpbmg0ljTlUlLGJa_BHyzjiIsKVD2J6lSoaihKWtLHaL9ZNeoJwpFSMmNRoiiRiRIQI5cRUalMspiruuZP0aH7U3ML0e9z-OEQ-Or4_Nmfbz9Hd3poHaL9drNVL8AvbOVLI7AbxbVw0g
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Enhancement+ANPSO+Processing+Technology+Based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.jtitle=IAENG+international+journal+of+computer+science&rft.au=You%2C+Zhangping&rft.au=Yi%2C+Dajian&rft.au=Fang%2C+Zheng&rft.au=Zhang%2C+Wenhui&rft.date=2024-11-01&rft.pub=International+Association+of+Engineers&rft.issn=1819-656X&rft.eissn=1819-9224&rft.volume=51&rft.issue=11&rft.spage=1781&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1819-656X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1819-656X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1819-656X&client=summon