Image Enhancement ANPSO Processing Technology Based on Improved Particle Swarm Optimization Algorithm
To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is proposed. This algorithm integrates Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) using natural inspiration and chaos theory to...
Saved in:
| Published in | IAENG international journal of computer science Vol. 51; no. 11; p. 1781 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hong Kong
International Association of Engineers
01.11.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1819-656X 1819-9224 |
Cover
| Abstract | To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is proposed. This algorithm integrates Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) using natural inspiration and chaos theory to enhance image quality. By employing a nonlinear random incremental method, it designs adaptive inertia weights to improve global search capabilities and stability. Furthermore, based on the pheromone release and path optimization mechanisms of the ant colony algorithm, it enhances the information transmission mechanism in PSO, allowing for more efficient information sharing among particles and strengthening cooperative search abilities. Experimental comparisons with Genetic Algorithm (GA), ACO, and PSO demonstrate that ANPSO improves Peak Signal-toNoise Ratio (PSNR), Structural Similarity Index (SSIM), and algorithm convergence by 8.3%, 7.6%, and 9.7%, respectively. These results highlight the significant performance advantages of ANPSO in image enhancement tasks. |
|---|---|
| AbstractList | To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is proposed. This algorithm integrates Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) using natural inspiration and chaos theory to enhance image quality. By employing a nonlinear random incremental method, it designs adaptive inertia weights to improve global search capabilities and stability. Furthermore, based on the pheromone release and path optimization mechanisms of the ant colony algorithm, it enhances the information transmission mechanism in PSO, allowing for more efficient information sharing among particles and strengthening cooperative search abilities. Experimental comparisons with Genetic Algorithm (GA), ACO, and PSO demonstrate that ANPSO improves Peak Signal-toNoise Ratio (PSNR), Structural Similarity Index (SSIM), and algorithm convergence by 8.3%, 7.6%, and 9.7%, respectively. These results highlight the significant performance advantages of ANPSO in image enhancement tasks. |
| Author | You, Zhangping Zhang, Wenhui Yi, Dajian Fang, Zheng |
| Author_xml | – sequence: 1 givenname: Zhangping surname: You fullname: You, Zhangping – sequence: 2 givenname: Dajian surname: Yi fullname: Yi, Dajian – sequence: 3 givenname: Zheng surname: Fang fullname: Fang, Zheng – sequence: 4 givenname: Wenhui surname: Zhang fullname: Zhang, Wenhui |
| BookMark | eNotjktLw0AUhQepYK39DwOuA_PIY7KMpWqhmECzcFfuTG4ekszEZKrorzdgV-dbfJxz7snKOos3ZM0VT4NUiHB15TiK3-_Idp47zcIwkUpFck3wMECDdG9bsAYHtJ5mb8Upp8XkDC6ybWiJprWud80PfYIZK-osPQzj5L4WLmDynemRnr5hGmg--m7ofsF3i5T1jZs63w4P5LaGfsbtNTekfN6Xu9fgmL8cdtkxGFPlg0pDanQqklqDwERyiLiueMhSKbSMlNYyUVrVigsjmIJKRAlndQRYxWCkkRvy-F-7fPu84OzPH-4y2WXxLLlIYsUk4_IPkblWrQ |
| ContentType | Journal Article |
| Copyright | Copyright International Association of Engineers Nov 1, 2024 |
| Copyright_xml | – notice: Copyright International Association of Engineers Nov 1, 2024 |
| DBID | 7SC 8FD JQ2 L7M L~C L~D |
| DatabaseName | Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1819-9224 |
| GroupedDBID | .4S .DC 2WC 5VS 7SC 8FD AAKPC ADMLS ALMA_UNASSIGNED_HOLDINGS ARCSS EDO EOJEC I-F JQ2 KQ8 L7M L~C L~D MK~ ML~ OBODZ OK1 OVT P2P TR2 TUS |
| ID | FETCH-LOGICAL-p98t-dba9cb927fba2e731a51bd140932b358bb378b8f812c208ad25710f5aed6ac3c3 |
| ISSN | 1819-656X |
| IngestDate | Mon Jun 30 14:37:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p98t-dba9cb927fba2e731a51bd140932b358bb378b8f812c208ad25710f5aed6ac3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3127680301 |
| PQPubID | 2049582 |
| ParticipantIDs | proquest_journals_3127680301 |
| PublicationCentury | 2000 |
| PublicationDate | 20241101 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 20241101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hong Kong |
| PublicationPlace_xml | – name: Hong Kong |
| PublicationTitle | IAENG international journal of computer science |
| PublicationYear | 2024 |
| Publisher | International Association of Engineers |
| Publisher_xml | – name: International Association of Engineers |
| SSID | ssib044738853 ssj0070001 |
| Score | 2.3008766 |
| Snippet | To improve the efficiency and effectiveness of image enhancement, a novel Ant Colony Natural Inspired Particle Swarm Optimization (ANPSO) algorithm is... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 1781 |
| SubjectTerms | Adaptive algorithms Ant colony optimization Chaos theory Genetic algorithms Image enhancement Image quality Particle swarm optimization |
| Title | Image Enhancement ANPSO Processing Technology Based on Improved Particle Swarm Optimization Algorithm |
| URI | https://www.proquest.com/docview/3127680301 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1819-9224 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0070001 issn: 1819-656X databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1819-9224 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0070001 issn: 1819-656X databaseCode: ADMLS dateStart: 20070301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1819-9224 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044738853 issn: 1819-656X databaseCode: M~E dateStart: 0 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6PfECjIu4DOQHxEsUFMdJ7TwWlLKh0U5aJipeKjtx1iGalpIKiYf9gv3oHTt24wmEgBcrcqIoyvl0Lp_PBaFXlazKoUzqUKSpgACFqVDGXIYVyVKm6qGEVWdbTIZH58mHWTobDK69rKVtK9-UP39bV_I_UoU9kKuukv0Hye5eChtwDfKFFSQM61_J-HipM27yZqFFZ071R5PTs6nL_tcsQE-dB2_BYFX6cKAjEuD61L4zOPshNstgCupjaesyg9HXi9Xmsl0sfff1eJRP3psWEz2L6PWeKO2IiMDaVU-lmEMQTU6vna3U-7bK_YuH0bElsD8vVP_gjtb-pJrF9tKnKuLE1uztwtdbX-fBzyRR2vaLHkUJzodOzTGTDsFW9XtZ3NVdOw1uW9ZapBJPHxPWDYS53Wh7Mp2Pz09O5kU-K16vv4V6Bpk-q7cDWfbQHiV6GsbHq9zppiRhlBvXprPyTDvHOph33_iLLTcOSnEf3bWRBR51Ij1AA9U8QPfc1A5slfhDpAxqsIcabFCDe9TgHjXYoAavGuxQgx1qsEEN9lGDd6h5hIpxXrw7Cu2wjXCd8TaspMhKmcWsliJWjBKRElnpbmg0ljTlUlLGJa_BHyzjiIsKVD2J6lSoaihKWtLHaL9ZNeoJwpFSMmNRoiiRiRIQI5cRUalMspiruuZP0aH7U3ML0e9z-OEQ-Or4_Nmfbz9Hd3poHaL9drNVL8AvbOVLI7AbxbVw0g |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Enhancement+ANPSO+Processing+Technology+Based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.jtitle=IAENG+international+journal+of+computer+science&rft.au=You%2C+Zhangping&rft.au=Yi%2C+Dajian&rft.au=Fang%2C+Zheng&rft.au=Zhang%2C+Wenhui&rft.date=2024-11-01&rft.pub=International+Association+of+Engineers&rft.issn=1819-656X&rft.eissn=1819-9224&rft.volume=51&rft.issue=11&rft.spage=1781&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1819-656X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1819-656X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1819-656X&client=summon |