Bibliometric Survey on Incremental Clustering Algorithms

For clustering accuracy, on influx of data, the parameter-free incremental clustering research is essential. The sole purpose of this bibliometric analysis is to understand the reach and utility of incremental clustering algorithms. This paper shows incremental clustering for time series dataset was...

Full description

Saved in:
Bibliographic Details
Published inLibrary philosophy and practice pp. 1 - 23
Main Authors Chaudhari, Archana, Joshi, Rahul Raghvendra, Mulay, Preeti, Kotecha, Ketan, Kulkarni, Parag
Format Journal Article
LanguageEnglish
Published Lincoln Library Philosophy and Practice 01.09.2019
Subjects
Online AccessGet full text
ISSN1522-0222

Cover

Abstract For clustering accuracy, on influx of data, the parameter-free incremental clustering research is essential. The sole purpose of this bibliometric analysis is to understand the reach and utility of incremental clustering algorithms. This paper shows incremental clustering for time series dataset was first explored in 2000 and continued thereafter till date. This Bibliometric analysis is done using Scopus, Google Scholar, Research Gate, and the tools like Gephi, Table2Net, and GPS Visualizer etc. The survey revealed that maximum publications of incremental clustering algorithms are from conference and journals, affiliated to Computer Science, Chinese lead publications followed by India then United States. Convergence optimality is another prominent keyword and less attentiveness towards correlation has observed. For betweenness and friendly measures keywords, after physics and astronomy; engineering is the contributing subject area, minimal contribution of review papers are observed in this art-search. The effectual incremental learning is feasible via parameter-free incremental clustering algorithm, applicable to all domains and hence this study.
AbstractList For clustering accuracy, on influx of data, the parameter-free incremental clustering research is essential. The sole purpose of this bibliometric analysis is to understand the reach and utility of incremental clustering algorithms. This paper shows incremental clustering for time series dataset was first explored in 2000 and continued thereafter till date. This Bibliometric analysis is done using Scopus, Google Scholar, Research Gate, and the tools like Gephi, Table2Net, and GPS Visualizer etc. The survey revealed that maximum publications of incremental clustering algorithms are from conference and journals, affiliated to Computer Science, Chinese lead publications followed by India then United States. Convergence optimality is another prominent keyword and less attentiveness towards correlation has observed. For betweenness and friendly measures keywords, after physics and astronomy; engineering is the contributing subject area, minimal contribution of review papers are observed in this art-search. The effectual incremental learning is feasible via parameter-free incremental clustering algorithm, applicable to all domains and hence this study.
Author Mulay, Preeti
Kotecha, Ketan
Kulkarni, Parag
Joshi, Rahul Raghvendra
Chaudhari, Archana
Author_xml – sequence: 1
  givenname: Archana
  surname: Chaudhari
  fullname: Chaudhari, Archana
– sequence: 2
  givenname: Rahul
  surname: Joshi
  middlename: Raghvendra
  fullname: Joshi, Rahul Raghvendra
– sequence: 3
  givenname: Preeti
  surname: Mulay
  fullname: Mulay, Preeti
– sequence: 4
  givenname: Ketan
  surname: Kotecha
  fullname: Kotecha, Ketan
– sequence: 5
  givenname: Parag
  surname: Kulkarni
  fullname: Kulkarni, Parag
BookMark eNotzctKAzEUgOEgCrbVdwi4HkjOyWSSZR28FAou7L5MLlOnZJKaZATfXkFX_-771-Q6puivyIq3AA0DgFuyLuXMGCAyXBH1OJkwpdnXPFn6vuQv_01TpLtos599rEOgfVhK9XmKJ7oNp5Sn-jGXO3IzDqH4-_9uyOH56dC_Nvu3l12_3TcXrWpj0HPptNRowGrB0YnBo2Fc6M4pJ81grFC2FWPnQOHYSqeskxalHAE4ww15-GMvOX0uvtTjOS05_h6PAFp3Ejnv8Ac_oENe
ContentType Journal Article
Copyright 2019. This work is published under NOCC (the “License†). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is published under NOCC (the “License†). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7XB
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
DWQXO
E3H
F2A
GNUQQ
GUQSH
M1O
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DatabaseName ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Central Student
Research Library Prep
Library Science Database
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle Publicly Available Content Database
Social Science Premium Collection
Research Library Prep
ProQuest One Social Sciences
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Library Science
ProQuest One Academic UKI Edition
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
EISSN 1522-0222
EndPage 23
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .4I
1XV
29L
2WC
3V.
5GY
7XB
8FK
8G5
8R4
8R5
AAFWJ
ABDBF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARB
AZQEC
BENPR
BPHCQ
CCPQU
CNYFK
DWQXO
E3H
E3Z
ELW
F2A
GNUQQ
GUQSH
IAO
IEA
IOF
IPO
ITC
M1O
M2O
MBDVC
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PRQQA
PV9
Q2X
Q9U
QF4
QN7
RNS
RZL
TR2
XH6
XSB
ID FETCH-LOGICAL-p98t-b3e16d9693b2c9413d4ae3b01497d8d6babc48c54f7d283f56d8cd6c366f22103
IEDL.DBID M1O
IngestDate Mon Jul 14 10:39:14 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p98t-b3e16d9693b2c9413d4ae3b01497d8d6babc48c54f7d283f56d8cd6c366f22103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2299763117?pq-origsite=%requestingapplication%
PQID 2299763117
PQPubID 54903
PageCount 23
ParticipantIDs proquest_journals_2299763117
PublicationCentury 2000
PublicationDate 20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 20190901
  day: 01
PublicationDecade 2010
PublicationPlace Lincoln
PublicationPlace_xml – name: Lincoln
PublicationTitle Library philosophy and practice
PublicationYear 2019
Publisher Library Philosophy and Practice
Publisher_xml – name: Library Philosophy and Practice
SSID ssj0023303
Score 2.2424018
Snippet For clustering accuracy, on influx of data, the parameter-free incremental clustering research is essential. The sole purpose of this bibliometric analysis is...
SourceID proquest
SourceType Aggregation Database
StartPage 1
SubjectTerms Algorithms
Bibliometrics
Big Data
Clustering
Computer engineering
Computer science
Datasets
Diabetes
Expected values
International conferences
Knowledge management
Library and information science
Principal components analysis
Title Bibliometric Survey on Incremental Clustering Algorithms
URI https://www.proquest.com/docview/2299763117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  databaseCode: ABDBF
  dateStart: 20041001
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  eissn: 1522-0222
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0023303
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Library Science Database
  databaseCode: M1O
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  eissn: 1522-0222
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/libraryscience
  omitProxy: false
  ssIdentifier: ssj0023303
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  databaseCode: BENPR
  dateStart: 20090101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  eissn: 1522-0222
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0023303
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9RuHgRRY0fQHow3obburXbyQCBEBPQKCbcyPqlRASEzUT_etvRaaKJB89t0qbt-72Pvvd-AOeR8mJmKnp8V4ROQCPX0VpQOYmSnuAepzSPdwyGpP8QXI_DsQ24rW1aZYGJOVCLBTcx8ktf46aWBc-jV8tXx7BGmd9VS6GxDWXz-WgYDAbezZfDpX11_Atjc8XRq8CkWHKTL_LczFLW5B8_ujH-f097sGttStTaPIJ92JLzKlQKvgZkxbcKdVukgC6QrUIyt1KMH0DUnrKZKcc3XfvRfbZ6k-9IT9AYsoki6kU6s8y0VtAKD7Vmj3oz6dPL-hBGve6o03css4KzjKPUYVh6RMQkxsznsVZjIkgkZsZboiIShCWMBxEPA0WFNj9USAzHEeGYEOVrHxEfQWm-mMtjQK6fUDd2Q8VxHOgJCfUVY4pIbHKqGD6BWnF0Eysd68n3uZ3-PXwGO9pAsTldNSilq0zWtRGQsgaU293h7V0jv_FPxtK6Cg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHPTiAzU-UPeg3hrbbrttD8T4IuCDGMWEW9Pt7qoJAkLR8OP8b86WrcaLN8476SYzO8_OzAdwGCon4nqix7WFb3lBaFvoBZWVKOmI1EmDIK933LVZ88m77vrdEnwVszC6rbKwibmhFoNU18hPXLSbqAuOE5wO3y2NGqX_rhYQGomBVhD1fMWYGey4kdNPTOHG9dYlyvvIdRtXnYumZVAGrGEUZhan0mEiYhHlbhqhSRdeIinXmUMgQsF4wlMvTH1PBQJdsfKZxvthKWVMuZgvUfzsAlQ8ivRlqJxfte8ffjI-SnMwrr9GPvdcjVVYNiEnOZu9kTUoyX4VVgo4B2K0uwp7ZoaBHBMzpKSFVpyvQ3j-ynt6Wl8v9SePk9GHnBIkQBMzKzLiJRe9id68gP6QnPWekX_Zy9t4AzrzYMkmlPuDvtwCYrtJYEe2r1IaeUiQBK7iXDFJdcsVp9tQK5gTG-UZx7-i3vn_-AAWm5272_i21b7ZhSWMZUz7Vw3K2Wgi9zBeyPi-kQqBeM7v4Bv8eNiO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT8MwDLYGSIgLb8RrkANw62ibNmkPCI2NaTAYSIDEbWrSBBBjPNaC4J_xV_g1OF0LggO3HTgnauXa-Wyntj-AjUA7oTAdPa4d-5bHA9tCL6itSCsnlo7kPLvvOG6z5oV3eOlfluC96IUxZZUFJmZAHd9Lc0e-7SJu4llwHL6t87KI03pj9-HRMgxS5k9rQacxMJGWen3B9K2_c1BHXW-6bmP_vNa0coYB6yEMEktQ5bA4ZCEVrgwRzmMvUlSYrIHHQcxEJKQXSN_TPEY3rH1muH6YpIxpF3Mlio8dgTFusghTNeicfOV6lGY0XD_hPfNZjSn4KKQdlKrcVtJEVOTbr0GQ__JzTMNkHkmT6sD0Z6CkerMwVbBUkBy0ZqGct2aQLZL3XhlbLNbnINi7EV0zhMBwFZCz9OlZvRLcgMg5uDvFl9S6qRkogW6eVLtXKHtyfdefh_NhiLcAo737nloEYrsRt0Pb15KGHm6IuKuF0ExRU0km6BKsFlrr5JjQ73yrbPnv5XUYR112jg7arRWYwAgtL2pbhdHkKVVljIISsZbZG4HOkBX6CQ4uHZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bibliometric+Survey+on+Incremental+Clustering+Algorithms&rft.jtitle=Library+philosophy+and+practice&rft.au=Chaudhari%2C+Archana&rft.au=Joshi%2C+Rahul+Raghvendra&rft.au=Mulay%2C+Preeti&rft.au=Kotecha%2C+Ketan&rft.date=2019-09-01&rft.pub=Library+Philosophy+and+Practice&rft.eissn=1522-0222&rft.spage=1&rft.epage=23&rft.externalDBID=HAS_PDF_LINK