A Swarm Algorithm Intelligent Optimization PSO in Power Network Real, West Algeria 220 kV

This paper presents an efficient and reliable evolutionary-based approach to solve the optimal power flow (OPF) combinatorial problem. The proposed (PSO) Swarm Optimization algorithm with generating units having non-smooth fuel costs curves while satisfying the constraints such as generator capacity...

Full description

Saved in:
Bibliographic Details
Published inElectrotehnica, Electronica, Automatica Vol. 64; no. 1; p. 55
Main Authors Mouloudi, Youssef, Meziane, Mohammed Amine, Laoufi, Abdellah, Bouchiba, Bousmaha, Harisi, Othmane
Format Journal Article
LanguageEnglish
Published Bucharest ICPE SA - Electra House of Publishing 01.03.2016
Online AccessGet full text
ISSN1582-5175
2392-828X

Cover

Abstract This paper presents an efficient and reliable evolutionary-based approach to solve the optimal power flow (OPF) combinatorial problem. The proposed (PSO) Swarm Optimization algorithm with generating units having non-smooth fuel costs curves while satisfying the constraints such as generator capacity limits, power balance, line flow limits, bus voltages and transformer tap setting. The conventional load flow and incorporation of the proposed method using PSO has been examined and tested for 22 bus in power network real, West Algeria. The PSO method is demonstrated and compared with conventional OPF method and the intelligence heuristic algorithm such as genetic algorithm, evolutionary programming. This method has been applied to the western part of the Algerian power network, and the simulation results have been found to be satisfactory compared with other results obtained using OPF.
AbstractList This paper presents an efficient and reliable evolutionary-based approach to solve the optimal power flow (OPF) combinatorial problem. The proposed (PSO) Swarm Optimization algorithm with generating units having non-smooth fuel costs curves while satisfying the constraints such as generator capacity limits, power balance, line flow limits, bus voltages and transformer tap setting. The conventional load flow and incorporation of the proposed method using PSO has been examined and tested for 22 bus in power network real, West Algeria. The PSO method is demonstrated and compared with conventional OPF method and the intelligence heuristic algorithm such as genetic algorithm, evolutionary programming. This method has been applied to the western part of the Algerian power network, and the simulation results have been found to be satisfactory compared with other results obtained using OPF.
Author Harisi, Othmane
Mouloudi, Youssef
Bouchiba, Bousmaha
Meziane, Mohammed Amine
Laoufi, Abdellah
Author_xml – sequence: 1
  givenname: Youssef
  surname: Mouloudi
  fullname: Mouloudi, Youssef
– sequence: 2
  givenname: Mohammed
  surname: Meziane
  middlename: Amine
  fullname: Meziane, Mohammed Amine
– sequence: 3
  givenname: Abdellah
  surname: Laoufi
  fullname: Laoufi, Abdellah
– sequence: 4
  givenname: Bousmaha
  surname: Bouchiba
  fullname: Bouchiba, Bousmaha
– sequence: 5
  givenname: Othmane
  surname: Harisi
  fullname: Harisi, Othmane
BookMark eNotjl1rgzAYRsPoYK7rfwjsdoK-iZpcStlHocyxln1clahvurRqXEwR9uvr2K7OzcM5zzWZdbbDCxIAkxAKEB8zEsSJgDCJs-SKLIbhEEURSMmijAXkM6ebUbmW5s3eOuO_WrrqPDaN2WPnadF705of5Y3t6MumoGaCHdHRZ_SjdUf6iqq5o-84-F8FOqMoQESPbzfkUqtmwMU_52T7cL9dPoXr4nG1zNdhL4UPE8wyUEpXDEtMY4m1ELxkDDOuUqF4pQEqBnUZa8SqnmayxIoLoXXJpQQ2J7d_2t7Z79N0Y3ewJ9dNxV08qTmkacbZGSQ3UXM
ContentType Journal Article
Copyright Copyright ICPE SA - Electra House of Publishing Jan-Mar 2016
Copyright_xml – notice: Copyright ICPE SA - Electra House of Publishing Jan-Mar 2016
DBID 8FE
8FG
ABUWG
AFKRA
ARAPS
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (via ProQuest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2392-828X
ExternalDocumentID 3982239131
Genre Feature
GroupedDBID 8FE
8FG
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
DWQXO
EOJEC
HCIFZ
OBODZ
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
TUS
ID FETCH-LOGICAL-p98t-5e772aafc3ebe619ed884b33e74a68a4cf22c32db1feecdc3e9bec488ffb49923
IEDL.DBID BENPR
ISSN 1582-5175
IngestDate Mon Jul 14 07:44:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p98t-5e772aafc3ebe619ed884b33e74a68a4cf22c32db1feecdc3e9bec488ffb49923
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1772426674
PQPubID 406310
ParticipantIDs proquest_journals_1772426674
PublicationCentury 2000
PublicationDate 2016-03-01
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Bucharest
PublicationPlace_xml – name: Bucharest
PublicationSubtitle EEA
PublicationTitle Electrotehnica, Electronica, Automatica
PublicationYear 2016
Publisher ICPE SA - Electra House of Publishing
Publisher_xml – name: ICPE SA - Electra House of Publishing
SSID ssj0002993073
Score 1.9793532
Snippet This paper presents an efficient and reliable evolutionary-based approach to solve the optimal power flow (OPF) combinatorial problem. The proposed (PSO) Swarm...
SourceID proquest
SourceType Aggregation Database
StartPage 55
Title A Swarm Algorithm Intelligent Optimization PSO in Power Network Real, West Algeria 220 kV
URI https://www.proquest.com/docview/1772426674
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: East Europe, Central Europe Database
  customDbUrl:
  eissn: 2392-828X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002993073
  issn: 1582-5175
  databaseCode: BYOGL
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eastcentraleurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2392-828X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002993073
  issn: 1582-5175
  databaseCode: BENPR
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2392-828X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002993073
  issn: 1582-5175
  databaseCode: 8FG
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4gXLwYjRofSPbg0Y2wuy3bgzFoQDSxEECDJ7KvqlEeYo1_39nS4sHEUw9tmnZmduab3Zn5AE6dQlNhilMjGpIKrUMqA22oYzKwViFg5r45-T4Ouw_ibhyMSxAXvTC-rLLwiZmjtnPj98jPGwgDfTRpisvFB_WsUf50taDQUDm1gr3IRoxtQIX5yVhlqFy14_5gveuCztcbdTZEFaFl0GgGf5xwFlk627CVQ0LSWulwB0putgtPLTL8Vsspab0_42ekL1Nyu56emZIervRp3kJJ-sMeecWLJzwj8aqumwwQAZ4RTxzjX-HtjDBWJ2-PezDqtEfXXZrTINBFJFMaOPxzpRLDUd6Y7jgrpdCcu6ZQoVTCJIwZzqxuJM4Zi49FqBdcl0miMZ1hfB_Ks_nMHQDRCXPMcYNJlRKWB5Hmiqu6DkXdRYm0h1AtRDHJTflz8iv4o_9vH8MmoolwVaBVhXK6_HInGLFTXYMN2bmp5cr4AZYZmpg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QOOjFaNT4QN2D3myku9vSHohBhYBAIYAGT2RfVaM8hBrij_O_OVtaPJh449RDm01mZ3bmm-3MfAidaw6mQji1JLM9iwnhWp4jpKWJ5yjFATBT05zcCtzaA7sfOIMM-k57YUxZZeoTY0etJtLckV_ZAANNNCmy6-mHZVijzN_VlEKDJ9QKqhSPGEsaOxr6awEp3LxUvwN9XxBSrfRva1bCMmBNfS-yHA0Lcx5KCuJANqGV5zFBqS4y7nqcyZAQSYkSdqi1VPCZD2KD2YehgGzBzD2ACJBjlPmQ--VuKkGnu7rkAV9vzlA8sxWQrGMXnT8-Pw5k1W20lSBQXF6azA7K6PEueirj3oLPRrj8_gxSRy8jXF8N64xwGxzLKOnYxJ1eG7_Cw_Cr4WBZRo67ADgvseGpMUsYs8aEFPDb4x7qr2M_9lF2PBnrA4RFSDTRVEIOx5miji8op7wgXFbQfuipQ5RPt2KYnJz58FfPR_-_PkMbtX6rOWzWg8Yx2gQg4y5rw_IoG80-9QmAhUicJirBaLhmI_gBM_DZWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTwIxEG4IJsaL0ajxgdqD3tzAtt3d7sEYIq4gCkTQ4Im03a4a5SGsIf40_53TfeDBxBunPXTTZDrTr9-080DoRAswFSKopZjNLSala3FHKksT7oShAMJMTXLyXcutP7CbvtMvoO88F8aEVeaYmAB1OFbmjrxsAw00p4nHylEWFtGpBReTD8t0kDIvrXk7jdREmvprDu7b7LxRA12fEhJc9S7rVtZhwJr4PLYcDZMKESkKooAnoUPOmaRUe0y4XDAVEaIoCaUdaa1C-M0HkcHko0iCp2BqHgD6r3imiLtJUg-uF9c7gPJm9yTVWoHDOrbn_EH75AgLNtB6xj1xNTWWTVTQoy30VMXduZgOcfX9GWSMX4a4sSjTGeM2QMowy9XEnW4bv8LHdFbDrTSAHN8D1TzDpkONmcIYNCakgt8et1FvGauxg4qj8UjvIiwjoommCrw3wULq-JIKKirSZRXtRzzcQ6V8KQbZnpkNfjW8___wMVoF1Q9uG63mAVoDBuOmQWElVIynn_oQWEIsjxJ9YDRYsv5_AGR81vI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Swarm+Algorithm+Intelligent+Optimization+PSO+in+Power+Network+Real%2C+West+Algeria+220+kV&rft.jtitle=Electrotehnica%2C+Electronica%2C+Automatica&rft.au=Mouloudi%2C+Youssef&rft.au=Meziane%2C+Mohammed+Amine&rft.au=Laoufi%2C+Abdellah&rft.au=Bouchiba%2C+Bousmaha&rft.date=2016-03-01&rft.pub=ICPE+SA+-+Electra+House+of+Publishing&rft.issn=1582-5175&rft.eissn=2392-828X&rft.volume=64&rft.issue=1&rft.spage=55&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3982239131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1582-5175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1582-5175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1582-5175&client=summon