Estimating Remaining Useful Life in Machines Using Artificial Intelligence: A Scoping Review

The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The...

Full description

Saved in:
Bibliographic Details
Published inLibrary philosophy and practice pp. 1 - 26
Main Authors Sayyad, Sameer, Kumar, Satish, Bongale, Arunkumar, Bongale, Anupkumar M, Patil, Shruti
Format Journal Article
LanguageEnglish
Published Lincoln Library Philosophy and Practice 01.01.2021
Subjects
Online AccessGet full text
ISSN1522-0222

Cover

Abstract The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The primary objective of this bibliometric paper is to understand the scope of literature available related to RUL prediction. Scopus database is used to perform the analysis of 1673 extracted scientific literature from the year 1985 to 2020. Based on available published documents, analysis is done on the year-wise publication data, document types, language-wise distribution of documents, funding sponsors, authors contributions, affiliations, document wise citations, etc. to give an in-depth view of the research trends in the area of RUL prediction. The paper also focuses on the available maintenance methods, predictive maintenance models, RUL models, deep learning algorithms for RUL prediction challenges and future directions in the RUL prediction area.
AbstractList The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The primary objective of this bibliometric paper is to understand the scope of literature available related to RUL prediction. Scopus database is used to perform the analysis of 1673 extracted scientific literature from the year 1985 to 2020. Based on available published documents, analysis is done on the year-wise publication data, document types, language-wise distribution of documents, funding sponsors, authors contributions, affiliations, document wise citations, etc. to give an in-depth view of the research trends in the area of RUL prediction. The paper also focuses on the available maintenance methods, predictive maintenance models, RUL models, deep learning algorithms for RUL prediction challenges and future directions in the RUL prediction area.
Author Bongale, Arunkumar
Bongale, Anupkumar M
Patil, Shruti
Kumar, Satish
Sayyad, Sameer
Author_xml – sequence: 1
  givenname: Sameer
  surname: Sayyad
  fullname: Sayyad, Sameer
– sequence: 2
  givenname: Satish
  surname: Kumar
  fullname: Kumar, Satish
– sequence: 3
  givenname: Arunkumar
  surname: Bongale
  fullname: Bongale, Arunkumar
– sequence: 4
  givenname: Anupkumar
  surname: Bongale
  middlename: M
  fullname: Bongale, Anupkumar M
– sequence: 5
  givenname: Shruti
  surname: Patil
  fullname: Patil, Shruti
BookMark eNotjV1LwzAYhYMouE3_Q8DrQj7apPGujKmDiqDzThhZ-ma-o0trk-rft2O7OJzDOfCcObkOXYArMuOFEBkTQtySeYwHxoSUTM7I1yomPNqEYU_f4WgxnNJnBD-2tEYPFAN9te4bA8SpP63VkNCjQ9vSdUjQtriH4OCRVvTDdf0Z9Yvwd0duvG0j3F98QTZPq83yJavfntfLqs56U6ZMAhhpLVe6NJN2TPnCl6XPpVTOa-cUzwtVGiZ3ReOFZga4V0LxRjVeaisX5OGM7YfuZ4SYtoduHML0uBW5EZozppn8B4lKTwo
ContentType Journal Article
Copyright 2021. This work is published under https://creativecommons.org/licenses/by-nc/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 3V.
7XB
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
DWQXO
E3H
F2A
GNUQQ
GUQSH
M1O
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DatabaseName ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Central Student
ProQuest Research Library
Library Science Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle Publicly Available Content Database
Social Science Premium Collection
Research Library Prep
ProQuest One Social Sciences
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Library Science
ProQuest One Academic UKI Edition
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 1522-0222
EndPage 26
GroupedDBID .4I
1XV
29L
2WC
3V.
5GY
7XB
8FK
8G5
8R4
8R5
AAFWJ
ABDBF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARB
AZQEC
BENPR
BPHCQ
CCPQU
CNYFK
DWQXO
E3H
E3Z
ELW
F2A
GNUQQ
GUQSH
IAO
IEA
IOF
IPO
M1O
M2O
MBDVC
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PRQQA
Q2X
Q9U
QF4
QN7
RNS
TR2
XH6
XSB
ID FETCH-LOGICAL-p98t-3ee93aa16789678b06f5f88f4336cf7cc614568903b5df2709e1f6261d6df37a3
IEDL.DBID M1O
IngestDate Sun Jul 13 04:38:10 EDT 2025
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p98t-3ee93aa16789678b06f5f88f4336cf7cc614568903b5df2709e1f6261d6df37a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2492710070?pq-origsite=%requestingapplication%
PQID 2492710070
PQPubID 54903
PageCount 26
ParticipantIDs proquest_journals_2492710070
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Lincoln
PublicationPlace_xml – name: Lincoln
PublicationTitle Library philosophy and practice
PublicationYear 2021
Publisher Library Philosophy and Practice
Publisher_xml – name: Library Philosophy and Practice
SSID ssj0023303
Score 2.2568831
Snippet The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive...
SourceID proquest
SourceType Aggregation Database
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Bibliometrics
Classification
Deep learning
Internet of Things
Knowledge
Library and information science
Mathematical models
Neural networks
Preventive maintenance
Sensors
Support vector machines
Useful life
Title Estimating Remaining Useful Life in Machines Using Artificial Intelligence: A Scoping Review
URI https://www.proquest.com/docview/2492710070
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-6Xbz4LX5sIwfxltkuSdt4kSkbKm7K2GAHYSRpIkPtpu0u_vUmaaai4MFDLykkIXnf-b33ADgOqEp0TDlSAeeISMkQYzFFXApCU50GZW5Vrx9djcjNmI59wC33sMqlTHSCOp1JGyM_tZXtbCWaODifvyLbNcq-rvoWGqugagxlbCm8F959OlzGV8e_ZKxTHN0NMFkuWeJFnpqLQjTl-49qjP_f0yZY9zYlbJdEsAVWVLYN6j4jAZ5An3JkrwB6Xt4BDx3D3HYwe4QD9VI2ioCjXOnFM7ydagWnGew5qKXKoUMWuBXKihPw-lspzzPYNvO6zCtYvjXsgmG3M7y8Qr7VApqzpEBYKYY5D43mYuYTQaSpThJNMI6kjqU0SpxGCQuwMBfYigOmQm1coTCNUo1jjvdAJZtlah_AiArRMoaUDCUhknGhuWRScxKSkKsYH4Da8iwnnl3yyddBHv79-wistSyoxMVAaqBSvC1U3VgFhWiA6kWnfz9oOBL4ACFxwJA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VcoALO2JpwQfglpLE2YyEUAWtWrogoVbqAalyHBtVQFpoKwT_xK_wTdhOwnbg1gOHXBLJiT2T57E98x7AgenyQPguNbhJqeEwRgxCfNegLHTcSERmUlvVanu1rnPZc3s5eMtqYVRaZYaJGqijIVN75MeK2U4x0fjm2ejRUKpR6nQ1k9BI3KLBX57lkm18Wr-Q9j207Wqlc14zUlUBY0SCiYE5J5hSS4I0kVdoesIVQSAcjD0mfMbkfOV6ATFxKL_V9k3CLSGjfivyIoF9imWzczCvlLvUD9Wyrj7Xdxhr6a2fkK7nqeoyvGc9TNJT7krTSVhir7_IH__NEKzAUhoxo3Li4quQ4_EaFNN6C3SE0oIq5WAoRap1uKlI6FI341t0zR8SGQzUHXMxvUfNgeBoEKOWTiTlY6TzJvQbEj4NVP9GVHqCyrJdXVeGkpOUDejMor-bkI-HMd8C5LlhaMswkVnMcRihoaCMMEEdy7Eo9_E2FDLT9VMwGPe_7Lbz9-N9WKh1Ws1-s95u7MKirdJn9G5PAfKTpykvyvhnEu5pr0PQn7GJPwAn5xoG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VIiEu7IilBR-AW2gSZzMSQghatbQFhKjUA1LkODaqEGFJKgR_xq_wNdhOwnbgxoFDLonkZDyT5xl7Zh7AlunyQPguNbhJqeEwRgxCfNegLHLcWMRmXlvVP_XaA-dk6A4r8FrWwqi0yhITNVDHd0ztkTdUZzvVicY3G6JIizg_bh3cPxiKQUqdtJZ0GrmJdPnzkwzf0v3OsdT1tm23mpdHbaNgGDDuSZAZmHOCKbUkYBN5RaYnXBEEwsHYY8JnTK5drhcQE0fyu23fJNwSMgKwYi8W2KdYDjsBk4qxQ_1QfevsI9bDWNNwfYd3vWa1ZuGtlDZPVbnZHWfRLnv50QjyX07HHMwUnjQ6zE1_Hio8WYB6UYeBdlBRaKUMDxUItghXTQlp6mZyjS74bU6PgQYpl-Kh3khwNEpQXyeY8hTpfAr9hrzPBup8aWC6hw7luLreDOUnLEtw-RfyLkM1uUv4CiDPjSJbuo_MYo7DCI0EZYQJ6liORbmPV6FWqjEsQCINP3W49vvjTZiSyg17ndPuOkzbKqtGbwLVoJo9jnldukVZtKENEEH4xxp-ByEGIs8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Remaining+Useful+Life+in+Machines+Using+Artificial+Intelligence%3A+A+Scoping+Review&rft.jtitle=Library+philosophy+and+practice&rft.au=Sayyad%2C+Sameer&rft.au=Kumar%2C+Satish&rft.au=Bongale%2C+Arunkumar&rft.au=Bongale%2C+Anupkumar+M&rft.date=2021-01-01&rft.pub=Library+Philosophy+and+Practice&rft.eissn=1522-0222&rft.spage=1&rft.epage=26&rft.externalDBID=HAS_PDF_LINK