Estimating Remaining Useful Life in Machines Using Artificial Intelligence: A Scoping Review
The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The...
Saved in:
Published in | Library philosophy and practice pp. 1 - 26 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lincoln
Library Philosophy and Practice
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1522-0222 |
Cover
Abstract | The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The primary objective of this bibliometric paper is to understand the scope of literature available related to RUL prediction. Scopus database is used to perform the analysis of 1673 extracted scientific literature from the year 1985 to 2020. Based on available published documents, analysis is done on the year-wise publication data, document types, language-wise distribution of documents, funding sponsors, authors contributions, affiliations, document wise citations, etc. to give an in-depth view of the research trends in the area of RUL prediction. The paper also focuses on the available maintenance methods, predictive maintenance models, RUL models, deep learning algorithms for RUL prediction challenges and future directions in the RUL prediction area. |
---|---|
AbstractList | The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive maintenance aims to minimize the downtime of machines or process, decreases maintenance costs, and increases the productivity of industries. The primary objective of this bibliometric paper is to understand the scope of literature available related to RUL prediction. Scopus database is used to perform the analysis of 1673 extracted scientific literature from the year 1985 to 2020. Based on available published documents, analysis is done on the year-wise publication data, document types, language-wise distribution of documents, funding sponsors, authors contributions, affiliations, document wise citations, etc. to give an in-depth view of the research trends in the area of RUL prediction. The paper also focuses on the available maintenance methods, predictive maintenance models, RUL models, deep learning algorithms for RUL prediction challenges and future directions in the RUL prediction area. |
Author | Bongale, Arunkumar Bongale, Anupkumar M Patil, Shruti Kumar, Satish Sayyad, Sameer |
Author_xml | – sequence: 1 givenname: Sameer surname: Sayyad fullname: Sayyad, Sameer – sequence: 2 givenname: Satish surname: Kumar fullname: Kumar, Satish – sequence: 3 givenname: Arunkumar surname: Bongale fullname: Bongale, Arunkumar – sequence: 4 givenname: Anupkumar surname: Bongale middlename: M fullname: Bongale, Anupkumar M – sequence: 5 givenname: Shruti surname: Patil fullname: Patil, Shruti |
BookMark | eNotjV1LwzAYhYMouE3_Q8DrQj7apPGujKmDiqDzThhZ-ma-o0trk-rft2O7OJzDOfCcObkOXYArMuOFEBkTQtySeYwHxoSUTM7I1yomPNqEYU_f4WgxnNJnBD-2tEYPFAN9te4bA8SpP63VkNCjQ9vSdUjQtriH4OCRVvTDdf0Z9Yvwd0duvG0j3F98QTZPq83yJavfntfLqs56U6ZMAhhpLVe6NJN2TPnCl6XPpVTOa-cUzwtVGiZ3ReOFZga4V0LxRjVeaisX5OGM7YfuZ4SYtoduHML0uBW5EZozppn8B4lKTwo |
ContentType | Journal Article |
Copyright | 2021. This work is published under https://creativecommons.org/licenses/by-nc/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is published under https://creativecommons.org/licenses/by-nc/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 3V. 7XB 8FK 8G5 ABUWG AFKRA ALSLI AZQEC BENPR CCPQU CNYFK DWQXO E3H F2A GNUQQ GUQSH M1O M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PRQQA Q9U |
DatabaseName | ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Central Student ProQuest Research Library Library Science Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic |
DatabaseTitle | Publicly Available Content Database Social Science Premium Collection Research Library Prep ProQuest One Social Sciences ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic Library and Information Science Abstracts (LISA) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Library Science ProQuest One Academic UKI Edition ProQuest Central Korea Library & Information Science Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1522-0222 |
EndPage | 26 |
GroupedDBID | .4I 1XV 29L 2WC 3V. 5GY 7XB 8FK 8G5 8R4 8R5 AAFWJ ABDBF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARB AZQEC BENPR BPHCQ CCPQU CNYFK DWQXO E3H E3Z ELW F2A GNUQQ GUQSH IAO IEA IOF IPO M1O M2O MBDVC OK1 OVT P2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PROAC PRQQA Q2X Q9U QF4 QN7 RNS TR2 XH6 XSB |
ID | FETCH-LOGICAL-p98t-3ee93aa16789678b06f5f88f4336cf7cc614568903b5df2709e1f6261d6df37a3 |
IEDL.DBID | M1O |
IngestDate | Sun Jul 13 04:38:10 EDT 2025 |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p98t-3ee93aa16789678b06f5f88f4336cf7cc614568903b5df2709e1f6261d6df37a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2492710070?pq-origsite=%requestingapplication% |
PQID | 2492710070 |
PQPubID | 54903 |
PageCount | 26 |
ParticipantIDs | proquest_journals_2492710070 |
PublicationCentury | 2000 |
PublicationDate | 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 20210101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lincoln |
PublicationPlace_xml | – name: Lincoln |
PublicationTitle | Library philosophy and practice |
PublicationYear | 2021 |
Publisher | Library Philosophy and Practice |
Publisher_xml | – name: Library Philosophy and Practice |
SSID | ssj0023303 |
Score | 2.2568831 |
Snippet | The remaining useful life (RUL) estimations become one of the most essential aspects of predictive maintenance (PdM) in the era of industry 4.0. Predictive... |
SourceID | proquest |
SourceType | Aggregation Database |
StartPage | 1 |
SubjectTerms | Algorithms Artificial intelligence Bibliometrics Classification Deep learning Internet of Things Knowledge Library and information science Mathematical models Neural networks Preventive maintenance Sensors Support vector machines Useful life |
Title | Estimating Remaining Useful Life in Machines Using Artificial Intelligence: A Scoping Review |
URI | https://www.proquest.com/docview/2492710070 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-6Xbz4LX5sIwfxltkuSdt4kSkbKm7K2GAHYSRpIkPtpu0u_vUmaaai4MFDLykkIXnf-b33ADgOqEp0TDlSAeeISMkQYzFFXApCU50GZW5Vrx9djcjNmI59wC33sMqlTHSCOp1JGyM_tZXtbCWaODifvyLbNcq-rvoWGqugagxlbCm8F959OlzGV8e_ZKxTHN0NMFkuWeJFnpqLQjTl-49qjP_f0yZY9zYlbJdEsAVWVLYN6j4jAZ5An3JkrwB6Xt4BDx3D3HYwe4QD9VI2ioCjXOnFM7ydagWnGew5qKXKoUMWuBXKihPw-lspzzPYNvO6zCtYvjXsgmG3M7y8Qr7VApqzpEBYKYY5D43mYuYTQaSpThJNMI6kjqU0SpxGCQuwMBfYigOmQm1coTCNUo1jjvdAJZtlah_AiArRMoaUDCUhknGhuWRScxKSkKsYH4Da8iwnnl3yyddBHv79-wistSyoxMVAaqBSvC1U3VgFhWiA6kWnfz9oOBL4ACFxwJA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VcoALO2JpwQfglpLE2YyEUAWtWrogoVbqAalyHBtVQFpoKwT_xK_wTdhOwnbg1gOHXBLJiT2T57E98x7AgenyQPguNbhJqeEwRgxCfNegLHTcSERmUlvVanu1rnPZc3s5eMtqYVRaZYaJGqijIVN75MeK2U4x0fjm2ejRUKpR6nQ1k9BI3KLBX57lkm18Wr-Q9j207Wqlc14zUlUBY0SCiYE5J5hSS4I0kVdoesIVQSAcjD0mfMbkfOV6ATFxKL_V9k3CLSGjfivyIoF9imWzczCvlLvUD9Wyrj7Xdxhr6a2fkK7nqeoyvGc9TNJT7krTSVhir7_IH__NEKzAUhoxo3Li4quQ4_EaFNN6C3SE0oIq5WAoRap1uKlI6FI341t0zR8SGQzUHXMxvUfNgeBoEKOWTiTlY6TzJvQbEj4NVP9GVHqCyrJdXVeGkpOUDejMor-bkI-HMd8C5LlhaMswkVnMcRihoaCMMEEdy7Eo9_E2FDLT9VMwGPe_7Lbz9-N9WKh1Ws1-s95u7MKirdJn9G5PAfKTpykvyvhnEu5pr0PQn7GJPwAn5xoG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VIiEu7IilBR-AW2gSZzMSQghatbQFhKjUA1LkODaqEGFJKgR_xq_wNdhOwnbgxoFDLonkZDyT5xl7Zh7AlunyQPguNbhJqeEwRgxCfNegLHLcWMRmXlvVP_XaA-dk6A4r8FrWwqi0yhITNVDHd0ztkTdUZzvVicY3G6JIizg_bh3cPxiKQUqdtJZ0GrmJdPnzkwzf0v3OsdT1tm23mpdHbaNgGDDuSZAZmHOCKbUkYBN5RaYnXBEEwsHYY8JnTK5drhcQE0fyu23fJNwSMgKwYi8W2KdYDjsBk4qxQ_1QfevsI9bDWNNwfYd3vWa1ZuGtlDZPVbnZHWfRLnv50QjyX07HHMwUnjQ6zE1_Hio8WYB6UYeBdlBRaKUMDxUItghXTQlp6mZyjS74bU6PgQYpl-Kh3khwNEpQXyeY8hTpfAr9hrzPBup8aWC6hw7luLreDOUnLEtw-RfyLkM1uUv4CiDPjSJbuo_MYo7DCI0EZYQJ6liORbmPV6FWqjEsQCINP3W49vvjTZiSyg17ndPuOkzbKqtGbwLVoJo9jnldukVZtKENEEH4xxp-ByEGIs8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Remaining+Useful+Life+in+Machines+Using+Artificial+Intelligence%3A+A+Scoping+Review&rft.jtitle=Library+philosophy+and+practice&rft.au=Sayyad%2C+Sameer&rft.au=Kumar%2C+Satish&rft.au=Bongale%2C+Arunkumar&rft.au=Bongale%2C+Anupkumar+M&rft.date=2021-01-01&rft.pub=Library+Philosophy+and+Practice&rft.eissn=1522-0222&rft.spage=1&rft.epage=26&rft.externalDBID=HAS_PDF_LINK |