Modern Engineering Thermodynamics - Textbook with Tables Booklet
Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanic...
        Saved in:
      
    
          | Main Authors | , | 
|---|---|
| Format | eBook | 
| Language | English | 
| Published | 
        San Diego
          Elsevier Science & Technology
    
        2011
     | 
| Edition | 1 | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 0123850738 9780123850737  | 
Cover
                Table of Contents: 
            
                  - 18.5 Molecular Velocity Distributions
 - Chapter 4. The First Law of Thermodynamics and Energy Transport Mechanisms -- 4.1 Introducción (Introduction) -- 4.2 Emmy Noether and the Conservation Laws of Physics -- 4.3 The First Law of Thermodynamics -- 4.4 Energy Transport Mechanisms -- 4.5 Point and Path Functions -- 4.6 Mechanical Work Modes of Energy Transport -- 4.7 Nonmechanical Work Modes of Energy Transport -- 4.8 Power Modes of Energy Transport -- 4.9 Work Efficiency -- 4.10 The Local Equilibrium Postulate -- 4.11 The State Postulate -- 4.12 Heat Modes of Energy Transport -- 4.13 Heat Transfer Modes -- 4.14 A Thermodynamic Problem Solving Technique -- 4.15 How to Write a Thermodynamics Problem -- Summary -- Problems -- Chapter 5. First Law Closed System Applications -- 5.1 Introduction -- 5.2 Sealed, Rigid Containers -- 5.3 Electrical Devices -- 5.4 Power Plants -- 5.5 Incompressible Liquids -- 5.6 Ideal Gases -- 5.7 Piston-Cylinder Devices -- 5.8 Closed System Unsteady State Processes -- 5.9 The Explosive Energy of Pressure Vessels -- Summary -- Problems -- Chapter 6. First Law Open System Applications -- 6.1 Introduction -- 6.2 Mass Flow Energy Transport -- 6.3 Conservation of Energy and Conservation of Mass Equations for Open Systems -- 6.4 Flow Stream Specific Kinetic and Potential Energies -- 6.5 Nozzles and Diffusers -- 6.6 Throttling Devices -- 6.7 Throttling Calorimeter -- 6.8 Heat Exchangers -- 6.9 Shaft Work Machines -- 6.10 Open System Unsteady State Processes -- Summary -- Problems -- Chapter 7. Second Law of Thermodynamics and Entropy Transport and Production Mechanisms -- 7.1 Introduction -- 7.2 What Is Entropy? -- 7.3 The Second Law of Thermodynamics -- 7.4 Carnot's Heat Engine and the Second Law of Thermodynamics -- 7.5 The Absolute Temperature Scale -- 7.6 Heat Engines Running Backward -- 7.7 Clausius's Definition of Entropy -- 7.8 Numerical Values for Entropy
 - 7.9 Entropy Transport Mechanisms -- 7.10 Differential Entropy Balance -- 7.11 Heat Transport of Entropy -- 7.12 Work Mode Transport of Entropy -- 7.13 Entropy Production Mechanisms -- 7.14 Heat Transfer Production of Entropy -- 7.15 Work Mode Production of Entropy -- 7.16 Phase Change Entropy Production -- 7.17 Entropy Balance and Entropy Rate Balance Equations -- Summary -- Problems -- Chapter 8. Second Law Closed System Applications -- 8.1 Introduction -- 8.2 Systems Undergoing Reversible Processes -- 8.3 Systems Undergoing Irreversible Processes -- 8.4 Diffusional Mixing -- Summary -- Problems -- Chapter 9. Second Law Open System Applications -- 9.1 Introduction -- 9.2 Mass Flow Transport of Entropy -- 9.3 Mass Flow Production of Entropy -- 9.4 Open System Entropy Balance Equations -- 9.5 Nozzles, Diffusers, and Throttles -- 9.6 Heat Exchangers -- 9.7 Mixing -- 9.8 Shaft Work Machines -- 9.9 Unsteady State Processes in Open Systems -- Summary -- Final Comments on the Second Law -- Problems -- Chapter 10. Availability Analysis -- 10.1 What is Availability? -- 10.2 Fun with Scalar, Vector, and Conservative Fields -- 10.3 What Are Conservative Forces? -- 10.4 Maximum Reversible Work -- 10.5 Local Environment -- 10.6 Availability -- 10.7 Closed System Availability Balance -- 10.8 Flow Availability -- 10.9 Open System Availability Rate Balance -- 10.10 Modified Availability Rate Balance (MARB) Equation -- 10.11 Energy Efficiency Based on the Second Law -- Summary -- Problems -- Chapter 11. More Thermodynamic Relations -- 11.1 Kynning (Introduction) -- 11.2 Two New Properties: Helmholtz and Gibbs Functions -- 11.3 Gibbs Phase Equilibrium Condition -- 11.4 Maxwell Equations -- 11.5 The Clapeyron Equation -- 11.6 Determining u, h, and s from p, v, and T -- 11.7 Constructing Tables and Charts -- 11.8 Thermodynamic Charts -- 11.9 Gas Tables
 - 11.10 Compressibility Factor and Generalized Charts -- 11.11 Is Steam Ever an Ideal Gas? -- Summary -- Problems -- Chapter 12. Mixtures of Gases and Vapors -- 12.1 Wprowadzenie (Introduction) -- 12.2 Thermodynamic Properties of Gas Mixtures -- 12.3 Mixtures of Ideal Gases -- 12.4 Psychrometrics -- 12.5 The Adiabatic Saturator -- 12.6 The Sling Psychrometer -- 12.7 Air Conditioning -- 12.8 Psychrometric Enthalpies -- 12.9 Mixtures of Real Gases -- Summary -- Problems -- Chapter 13. Vapor and Gas Power Cycles -- 13.1 Bevezetésének (Introduction) -- 13.2 Part I. Engines and Vapor Power Cycles -- 13.3 Carnot Power Cycle -- 13.4 Rankine Cycle -- 13.5 Operating Efficiencies -- 13.6 Rankine Cycle with Superheat -- 13.7 Rankine Cycle with Regeneration -- 13.8 The Development of the Steam Turbine -- 13.9 Rankine Cycle with Reheat -- 13.10 Modern Steam Power Plants -- 13.11 Part II. Gas Power Cycles -- 13.12 Air Standard Power Cycles -- 13.13 Stirling Cycle -- 13.14 Ericsson Cycle -- 13.15 Lenoir Cycle -- 13.16 Brayton Cycle -- 13.17 Aircraft Gas Turbine Engines -- 13.18 Otto Cycle -- 13.19 Atkinson Cycle -- 13.20 Miller Cycle -- 13.21 Diesel Cycle -- 13.22 Modern Prime Mover Developments -- 13.23 Second Law Analysis of Vapor and Gas Power Cycles -- Summary -- Problems -- Chapter 14. Vapor and Gas Refrigeration Cycles -- 14.1 Introduksjon (Introduction) -- 14.2 Part I. Vapor Refrigeration Cycles -- 14.3 Carnot Refrigeration Cycle -- 14.4 In the Beginning There Was Ice -- 14.5 Vapor-Compression Refrigeration Cycle -- 14.6 Refrigerants -- 14.7 Refrigerant Numbers -- 14.8 CFCs and the Ozone Layer -- 14.9 Cascade and Multistage Vapor-Compression Systems -- 14.10 Absorption Refrigeration -- 14.11 Commercial and Household Refrigerators -- 14.12 Part II. Gas Refrigeration Cycles -- 14.13 Air Standard Gas Refrigeration Cycles
 - e9780123749963 -- Front Cover -- Modern Engineering Thermodynamics -- Copyright -- Dedication -- What is an Engineer and What do Engineers do? -- Table of Contents -- Preface -- Text Objectives -- Cultural Infrastructure -- Text Coverage -- Text Features -- Acknowledgments -- Resources That Accompany This Book -- List of Symbols -- Greek Letters -- Prologue -- Paris France, 10:35 am, August 24, 1832 -- Chapter 1. The Beginning -- 1.1 What Is Thermodynamics? -- 1.2 Why Is Thermodynamics Important Today? -- 1.3 Getting Answers: A Basic Problem Solving Technique -- 1.4 Units and Dimensions -- 1.5 How Do We Measure Things? -- 1.6 Temperature Units -- 1.7 Classical Mechanical and Electrical Units Systems -- 1.8 Chemical Units -- 1.9 Modern Units Systems -- 1.10 Significant Figures -- 1.11 Potential and Kinetic Energies -- Summary -- Problems -- Chapter 2. Thermodynamic Concepts -- 2.1 Introduction -- 2.2 The Language of Thermodynamics -- 2.3 Phases of Matter -- 2.4 System States and Thermodynamic Properties -- 2.5 Thermodynamic Equilibrium -- 2.6 Thermodynamic Processes -- 2.7 Pressure and Temperature Scales -- 2.8 The Zeroth Law of Thermodynamics -- 2.9 The Continuum Hypothesis -- 2.10 The Balance Concept -- 2.11 The Conservation Concept -- 2.12 Conservation of Mass -- Summary -- Problems -- Chapter 3. Thermodynamic Properties -- 3.1 The Trees and The Forest -- 3.2 Why are Thermodynamic Property Values Important? -- 3.3 Fun with Mathematics -- 3.4 Some Exciting New Thermodynamic Properties -- 3.5 System Energy -- 3.6 Enthalpy -- 3.7 Phase Diagrams -- 3.8 Quality -- 3.9 Thermodynamic Equations of State -- 3.10 Thermodynamic Tables -- 3.11 How Do You Determine the "Thermodynamic State"? -- 3.12 Thermodynamic Charts -- 3.13 Thermodynamic Property Software -- Summary -- Problems
 - 14.14 Reversed Brayton Cycle Refrigeration -- 14.15 Reversed Stirling Cycle Refrigeration -- 14.16 Miscellaneous Refrigeration Technologies -- 14.17 Future Refrigeration Needs -- 14.18 Second Law Analysis of Refrigeration Cycles -- Summary -- Problems -- Chapter 15. Chemical Thermodynamics -- 15.1 Einführung (Introduction) -- 15.2 Stoichiometric Equations -- 15.3 Organic Fuels -- 15.4 Fuel Modeling -- 15.5 Standard Reference State -- 15.6 Heat of Formation -- 15.7 Heat of Reaction -- 15.8 Adiabatic Flame Temperature -- 15.9 Maximum Explosion Pressure -- 15.10 Entropy Production in Chemical Reactions -- 15.11 Entropy of Formation and Gibbs Function of Formation -- 15.12 Chemical Equilibrium and Dissociation -- 15.13 Rules for Chemical Equilibrium Constants -- 15.14 The van't Hoff Equation -- 15.15 Fuel Cells -- 15.16 Chemical Availability -- Summary -- Problems -- Chapter 16. Compressible Fluid Flow -- 16.1 Introducerea (Introduction) -- 16.2 Stagnation Properties -- 16.3 Isentropic Stagnation Properties -- 16.4 The Mach Number -- 16.5 Converging-Diverging Flows -- 16.6 Choked Flow -- 16.7 Reynolds Transport Theorem -- 16.8 Linear Momentum Rate Balance -- 16.9 Shock Waves -- 16.10 Nozzle and Diffuser Efficiencies -- Summary -- Problems -- Chapter 17. Thermodynamics of Biological Systems -- 17.1 Introdução (Introduction) -- 17.2 Living Systems -- 17.3 Thermodynamics of Biological Cells -- 17.4 Energy Conversion Efficiency of Biological Systems -- 17.5 Metabolism -- 17.6 Thermodynamics of Nutrition and Exercise -- 17.7 Limits to Biological Growth -- 17.8 Locomotion Transport Number -- 17.9 Thermodynamics of Aging and Death -- Summary -- Problems -- Chapter 18. Introduction to Statistical Thermodynamics -- 18.1 Introduction -- 18.2 Why Use a Statistical Approach? -- 18.3 Kinetic Theory of Gases -- 18.4 Intermolecular Collisions