Safer_RAIN: a Fast-Processing DEM-Based Algorithm for Pluvial Flood Hazard Assessment Across Large Urban Areas
Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al., ECOL INDIC, 2017). The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g. cloudbursts,...
Saved in:
| Published in | Earth and Space Science Open Archive ESSOAr |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Paper |
| Language | English |
| Published |
Washington
American Geophysical Union
20.12.2019
|
| Subjects | |
| Online Access | Get full text |
| DOI | 10.1002/essoar.10501403.1 |
Cover
| Abstract | Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al., ECOL INDIC, 2017). The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g. cloudbursts, rainstorms, heavy rainfall, hail, heavy snow) combined with the high population density and concentration of assets in urban areas makes them particularly vulnerable to pluvial flooding, hence, assessing their vulnerability under current and future climate scenarios is of paramount importance. Detailed hydrologic-hydraulic numerical modelling is resource intensive and therefore scarcely suitable for a consistent hazard assessment across large urban settlements. Given the steadily increasing availability of LiDAR (Light Detection And Ranging) high-resolution DEMs (Digital Elevation Models), several studies highlighted the potential for consistent pluvial flood hazard characterization of fast-processing DEM-based methods, such as the Hierarchical Filling and Spilling or Puddle-to-Puddle Dynamic Filling and Spilling (see e.g. Zhang et al., J HYDROL, 2014; Chu et al., WATER RESOUR RES, 2013). As part of the activities of the EIT Climate-KIC Demonstrator project SAFERPLACES (https://saferplaces.co/), we developed a fast-processing algorithm, named Safer_RAIN, that enables one to map pluvial flooding in large urban areas by implementing a filling and spilling procedure that accounts for spatially distributed rainfall input and infiltration processes (Green Ampt method). We present the first applications of the algorithm to model recent urban inundations occurred in Northern Italy. These preliminary applications, compared against ground evidence and detailed output from a two-dimensional hydrologic and hydraulic numerical model, highlight limitations and potential of Safer_RAIN for identifying pluvial-hazard hotspots across large urban environments. |
|---|---|
| AbstractList | Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al., ECOL INDIC, 2017). The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g. cloudbursts, rainstorms, heavy rainfall, hail, heavy snow) combined with the high population density and concentration of assets in urban areas makes them particularly vulnerable to pluvial flooding, hence, assessing their vulnerability under current and future climate scenarios is of paramount importance. Detailed hydrologic-hydraulic numerical modelling is resource intensive and therefore scarcely suitable for a consistent hazard assessment across large urban settlements. Given the steadily increasing availability of LiDAR (Light Detection And Ranging) high-resolution DEMs (Digital Elevation Models), several studies highlighted the potential for consistent pluvial flood hazard characterization of fast-processing DEM-based methods, such as the Hierarchical Filling and Spilling or Puddle-to-Puddle Dynamic Filling and Spilling (see e.g. Zhang et al., J HYDROL, 2014; Chu et al., WATER RESOUR RES, 2013). As part of the activities of the EIT Climate-KIC Demonstrator project SAFERPLACES (https://saferplaces.co/), we developed a fast-processing algorithm, named Safer_RAIN, that enables one to map pluvial flooding in large urban areas by implementing a filling and spilling procedure that accounts for spatially distributed rainfall input and infiltration processes (Green Ampt method). We present the first applications of the algorithm to model recent urban inundations occurred in Northern Italy. These preliminary applications, compared against ground evidence and detailed output from a two-dimensional hydrologic and hydraulic numerical model, highlight limitations and potential of Safer_RAIN for identifying pluvial-hazard hotspots across large urban environments. |
| Author | Castellarin, Attilio Mazzoli, Paolo Bagli, Stefano Reithofer, Andreas Luzzi, Valerio Mysiak, Jaroslav Humer, Günter Samela, Caterina Persiano, Simone |
| Author_xml | – sequence: 1 givenname: Attilio surname: Castellarin fullname: Castellarin, Attilio – sequence: 2 givenname: Caterina surname: Samela fullname: Samela, Caterina – sequence: 3 givenname: Simone surname: Persiano fullname: Persiano, Simone – sequence: 4 givenname: Stefano surname: Bagli fullname: Bagli, Stefano – sequence: 5 givenname: Valerio surname: Luzzi fullname: Luzzi, Valerio – sequence: 6 givenname: Paolo surname: Mazzoli fullname: Mazzoli, Paolo – sequence: 7 givenname: Jaroslav surname: Mysiak fullname: Mysiak, Jaroslav – sequence: 8 givenname: Günter surname: Humer fullname: Humer, Günter – sequence: 9 givenname: Andreas surname: Reithofer fullname: Reithofer, Andreas |
| BookMark | eNo1kD1PwzAQQD3AAIUfwGaJOcV2kiZlC4XSSgUqKLN1_ipBrh3sBFR-PUaF6W5473R6p-jIeacRuqBkTAlhVzpGDyHtJaEFycf0BLkXMDrw52b5eI0BzyH22Tp4mdDWbfHt3UN2A1Er3NitD23_tsPGB7y2w2cLFs-t9wov4BtCQmJM2k67Hjcy-BjxCsJW49cgwOEmaIhn6NiAjfr8b47QZn63mS2y1dP9ctassq6iNFMCKK0nplATVqnaTCtZCSJqqXPJmBAlq2rGiKoLmMqKmtoUpSJCaqLYVJo8HyF2ODu4DvZfYC3vQruDsOeU8N8W_NCC_7fgNEmXB6kL_mPQsefvfgguvclZUSaIFjnJfwAG8Wdo |
| ContentType | Paper |
| Copyright | 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 7ST 7TG 8FD 8FE 8FG AAFGM ABQRF ABUWG ADZZV AEUYN AFKRA AFLLJ AFOKG AGAJT AQTIP ARAPS AZQEC BENPR BGLVJ C1K CCPQU DWQXO H8D HCIFZ KL. L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQCXX PQEST PQGLB PQQKQ PQUKI PRINS SOI SQOEQ UNPAY |
| DOI | 10.1002/essoar.10501403.1 |
| DatabaseName | Environment Abstracts Meteorological & Geoastrophysical Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Korea - hybrid linking Technology Collection - hybrid linking ProQuest Central (Alumni) ProQuest Central (Alumni) - hybrid linking ProQuest One Sustainability ProQuest Central UK/Ireland SciTech Premium Collection - hybrid linking Advanced Technologies & Aerospace Collection - hybrid linking ProQuest Central Essentials - hybrid linking ProQuest Women's & Gender Studies - hybrid linking ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central - hybrid linking ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts ProQuest One Sustainability - hybrid linking Unpaywall |
| DatabaseTitle | Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| ExternalDocumentID | 10.1002/essoar.10501403.1 |
| GroupedDBID | 7ST 7TG 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ C1K CCPQU DWQXO H8D HCIFZ KL. L7M P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS SOI UNPAY |
| ID | FETCH-LOGICAL-p711-dba1186f4d627d8f97c7b0b8ce3c22bb5278220d84a9c71f8f45d0bce0d29cf33 |
| IEDL.DBID | UNPAY |
| IngestDate | Sun Sep 07 11:16:12 EDT 2025 Mon Jun 30 04:30:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p711-dba1186f4d627d8f97c7b0b8ce3c22bb5278220d84a9c71f8f45d0bce0d29cf33 |
| Notes | ObjectType-Article-1 content type line 51 ObjectType-Feature-2 SourceType-Working Papers-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/essoar.10501403.1 |
| PQID | 2451401430 |
| PQPubID | 4882998 |
| ParticipantIDs | unpaywall_primary_10_1002_essoar_10501403_1 proquest_journals_2451401430 |
| PublicationCentury | 2000 |
| PublicationDate | 20191220 |
| PublicationDateYYYYMMDD | 2019-12-20 |
| PublicationDate_xml | – month: 12 year: 2019 text: 20191220 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Earth and Space Science Open Archive ESSOAr |
| PublicationYear | 2019 |
| Publisher | American Geophysical Union |
| Publisher_xml | – name: American Geophysical Union |
| Score | 1.5819654 |
| Snippet | Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al.,... |
| SourceID | unpaywall proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Algorithms Climate change Climate models Cloudbursts Digital Elevation Models Extreme weather Flood hazards Flooding Floods Future climates Hail Hazard assessment Heavy rainfall Hydrologic models Hydrology Lidar Mathematical models Numerical models Population density Rain Rainfall Rainstorms Spilling Suburban areas Suburbs Two dimensional models Urban areas Urban environments |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60PehNUfHNHrzJ2mSzeQkiqTRU0VJ8gLewTz3UNMZU0V_vbJpUvXjOEpaZYb6Z3dnvQ-goNiF8YoIwziRhwneJgIUkltRQFbtMR_a9880oGD6wq0f_cQmN2rcwdqyyzYl1olZTac_Ie5T5thdgnnNevBKrGmVvV1sJDd5IK6izmmJsGXWpZcbqoG5_MBrftteZDu1B_pjy0srb2t7CO3H_lJYrs7zgnx98MvmFMuka6o55oct1tKTzDZTfcaPL7Da5HJ1ijlP-VpFmrB_gBoMBSR8gSOFk8gQbrZ5fMBSgeDyZvUNM4dROpOMh_4IQwMmCfxMnNS7iazsBjh9KwXOc2MH0TXSfDu4vhqRRRyBF6LpECQ69QWCYCmioIhOHMhSOiKT2JKVC-NRiv6MixmMZuiYyzFeOkNpRNJbG87ZQJ5_mehvhIGKGQzcZanCY8MJYQhsUeZGBaieQMd9B-62FsibC37Iff-yg44XVsmLOkZHN2ZBpNjd31po7c3f__9keWoWSpFZooM4-6lTlTB8A7FfisPHlNzKPsAA priority: 102 providerName: ProQuest |
| Title | Safer_RAIN: a Fast-Processing DEM-Based Algorithm for Pluvial Flood Hazard Assessment Across Large Urban Areas |
| URI | https://www.proquest.com/docview/2451401430 https://doi.org/10.1002/essoar.10501403.1 |
| UnpaywallVersion | acceptedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA66HbypqDiZIwdvktmmaZt668Q6RcdQB3oqSZqoOLvRdYr79b64bqh40HPeIby88L6P9-ULQgeRCWGJScIEU4RJ3yUSAkmkqKFZ5DLN7Xvnq17QHbCLO_-uMou2b2G-z-_pEVz3kSjsb7SWCnhtIDr1wAfYXUP1Qa8f3y8mlb_FfkONa9N8LN7fxHD4pYEk63Pp1eTTd9DqRp7b01K21eyHK-Of9raB6n0x1sUmWtH5FspvhNFFeh2f946xwImYlKSS_0NbwpBo0oFWleF4-DAqnsrHFwxAFfeH01eoPZxY5TruihmUCo6XPp04_uyf-NIqxfGgkCLHsRWwb6Pb5PT2pEuqXxTIOHRdkkkBHCIwLAtomHEThSqUjuRKe4pSKX1qMYKTcSYiFbqGG-ZnjlTayWikjOftoFo-yvUuwgFnRgDrDDUcrPTCSAFd4h43gIoCFYkGai7SnVY3YZJS5lsOxzyngQ6XR5CO514a6dw1mabzXKaLXKbu3r-im6hWFlO9DwChlC20ypOzFqp3Tnv961ZVKB8Vjb5- |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0hcqC3olJBC-0e4FRtsdfrj62EkClESQlRBEHittpPOATHOAlR-G_8t84mNtBLb5xt-fBmPPNmd2YeQvvcpfCIKcIk04SpOCQKXiRcU0cND5nN_LzzRT_pXLM_N_HNGnpuZmF8W2UTE5eB2oy1PyM_pCz2tQCLguPygXjVKH-72khoyFpawRwtV4zVgx3ndjGHEm5y1D0Fex9Q2j4b_u6QWmWAlGkYEqMkcOzEMZPQ1GSOpzpVgcq0jTSlSsXU59DAZExynYYucyw2gdI2MJRr589DIQO0WMQ41H6tk7P-4LK5PQ3oIYSrsay8mq4vZaKf4T9MdmNWlHIxl6PRm6TW_ohaA1naahOt2eITKq6ks5W4zLv9X1jitpxMST1FANkNg73ICWQ8g_PRLeAyvbvHwHfxYDR7BBfGbd8AjzvyCTwO5y_rPnG-TMO45xvO8XWlZIFz3we_hYbvAdNntF6MC7uNcJIxJ6F4TS34h4pSrqHqyqLMAblKNJc7aLdBSNQ_1ES8mn8H_XhBTZSrlRxitXyZihXcooFbhF_-_7HvaKMzvOiJXrd__hV9ADa0FIegwS5an1YzuweMY6q-1XbFSLyzJ_0F6_7tDA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yHbypqDiZkoM3yWzT9Je3KpYpOoZuME8lSRMVaze6TnF_vS9rN5x40HPeIby88L6P9-ULQieh9mGJCcI4k4QJ1yYCAkkoqaZpaDMVmPfOdz2vO2Q3I3dUm0WbtzDr83t6Btd9zAvzG62hAk4HiE7TcwF2N1Bz2OtHj8tJ5W-xa6hxc5ZP-OcHz7JvDSTeqqRX04XvoNGNvHZmpejI-Q9Xxj_tbRs1-3yiih20ofJdlD9wrYrkPrrunWOOYz4tSS3_h7aEIdHkAlpViqPsaVy8lM9vGIAq7mezd6g9HBvlOu7yOZQKjlY-nTha9E98a5TieFgInuPICNj30CC-Glx2Sf2LApn4tk1SwYFDeJqlHvXTQIe-9IUlAqkcSakQLjUYwUoDxkPp2zrQzE0tIZWV0lBqx9lHjXycqwOEvYBpDqzTV3CwwvFDCXQpcAINqMiTIW-h9jLdSX0TpgllruFwzLFa6HR1BMmk8tJIKtdkmlS5TJa5TOzDf0W3UaMsZuoIAEIpjuvS-ALB8bv- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safer_RAIN%3A+a+Fast-Processing+DEM-Based+Algorithm+for+Pluvial+Flood+Hazard+Assessment+Across+Large+Urban+Areas&rft.jtitle=Earth+and+Space+Science+Open+Archive+ESSOAr&rft.au=Castellarin%2C+Attilio&rft.au=Samela%2C+Caterina&rft.au=Persiano%2C+Simone&rft.au=Bagli%2C+Stefano&rft.date=2019-12-20&rft.pub=American+Geophysical+Union&rft_id=info:doi/10.1002%2Fessoar.10501403.1 |