Safer_RAIN: a Fast-Processing DEM-Based Algorithm for Pluvial Flood Hazard Assessment Across Large Urban Areas

Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al., ECOL INDIC, 2017). The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g. cloudbursts,...

Full description

Saved in:
Bibliographic Details
Published inEarth and Space Science Open Archive ESSOAr
Main Authors Castellarin, Attilio, Samela, Caterina, Persiano, Simone, Bagli, Stefano, Luzzi, Valerio, Mazzoli, Paolo, Mysiak, Jaroslav, Humer, Günter, Reithofer, Andreas
Format Paper
LanguageEnglish
Published Washington American Geophysical Union 20.12.2019
Subjects
Online AccessGet full text
DOI10.1002/essoar.10501403.1

Cover

Abstract Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al., ECOL INDIC, 2017). The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g. cloudbursts, rainstorms, heavy rainfall, hail, heavy snow) combined with the high population density and concentration of assets in urban areas makes them particularly vulnerable to pluvial flooding, hence, assessing their vulnerability under current and future climate scenarios is of paramount importance. Detailed hydrologic-hydraulic numerical modelling is resource intensive and therefore scarcely suitable for a consistent hazard assessment across large urban settlements. Given the steadily increasing availability of LiDAR (Light Detection And Ranging) high-resolution DEMs (Digital Elevation Models), several studies highlighted the potential for consistent pluvial flood hazard characterization of fast-processing DEM-based methods, such as the Hierarchical Filling and Spilling or Puddle-to-Puddle Dynamic Filling and Spilling (see e.g. Zhang et al., J HYDROL, 2014; Chu et al., WATER RESOUR RES, 2013). As part of the activities of the EIT Climate-KIC Demonstrator project SAFERPLACES (https://saferplaces.co/), we developed a fast-processing algorithm, named Safer_RAIN, that enables one to map pluvial flooding in large urban areas by implementing a filling and spilling procedure that accounts for spatially distributed rainfall input and infiltration processes (Green Ampt method). We present the first applications of the algorithm to model recent urban inundations occurred in Northern Italy. These preliminary applications, compared against ground evidence and detailed output from a two-dimensional hydrologic and hydraulic numerical model, highlight limitations and potential of Safer_RAIN for identifying pluvial-hazard hotspots across large urban environments.
AbstractList Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al., ECOL INDIC, 2017). The increase in frequency and intensity of extreme precipitation events caused by the changing climate (e.g. cloudbursts, rainstorms, heavy rainfall, hail, heavy snow) combined with the high population density and concentration of assets in urban areas makes them particularly vulnerable to pluvial flooding, hence, assessing their vulnerability under current and future climate scenarios is of paramount importance. Detailed hydrologic-hydraulic numerical modelling is resource intensive and therefore scarcely suitable for a consistent hazard assessment across large urban settlements. Given the steadily increasing availability of LiDAR (Light Detection And Ranging) high-resolution DEMs (Digital Elevation Models), several studies highlighted the potential for consistent pluvial flood hazard characterization of fast-processing DEM-based methods, such as the Hierarchical Filling and Spilling or Puddle-to-Puddle Dynamic Filling and Spilling (see e.g. Zhang et al., J HYDROL, 2014; Chu et al., WATER RESOUR RES, 2013). As part of the activities of the EIT Climate-KIC Demonstrator project SAFERPLACES (https://saferplaces.co/), we developed a fast-processing algorithm, named Safer_RAIN, that enables one to map pluvial flooding in large urban areas by implementing a filling and spilling procedure that accounts for spatially distributed rainfall input and infiltration processes (Green Ampt method). We present the first applications of the algorithm to model recent urban inundations occurred in Northern Italy. These preliminary applications, compared against ground evidence and detailed output from a two-dimensional hydrologic and hydraulic numerical model, highlight limitations and potential of Safer_RAIN for identifying pluvial-hazard hotspots across large urban environments.
Author Castellarin, Attilio
Mazzoli, Paolo
Bagli, Stefano
Reithofer, Andreas
Luzzi, Valerio
Mysiak, Jaroslav
Humer, Günter
Samela, Caterina
Persiano, Simone
Author_xml – sequence: 1
  givenname: Attilio
  surname: Castellarin
  fullname: Castellarin, Attilio
– sequence: 2
  givenname: Caterina
  surname: Samela
  fullname: Samela, Caterina
– sequence: 3
  givenname: Simone
  surname: Persiano
  fullname: Persiano, Simone
– sequence: 4
  givenname: Stefano
  surname: Bagli
  fullname: Bagli, Stefano
– sequence: 5
  givenname: Valerio
  surname: Luzzi
  fullname: Luzzi, Valerio
– sequence: 6
  givenname: Paolo
  surname: Mazzoli
  fullname: Mazzoli, Paolo
– sequence: 7
  givenname: Jaroslav
  surname: Mysiak
  fullname: Mysiak, Jaroslav
– sequence: 8
  givenname: Günter
  surname: Humer
  fullname: Humer, Günter
– sequence: 9
  givenname: Andreas
  surname: Reithofer
  fullname: Reithofer, Andreas
BookMark eNo1kD1PwzAQQD3AAIUfwGaJOcV2kiZlC4XSSgUqKLN1_ipBrh3sBFR-PUaF6W5473R6p-jIeacRuqBkTAlhVzpGDyHtJaEFycf0BLkXMDrw52b5eI0BzyH22Tp4mdDWbfHt3UN2A1Er3NitD23_tsPGB7y2w2cLFs-t9wov4BtCQmJM2k67Hjcy-BjxCsJW49cgwOEmaIhn6NiAjfr8b47QZn63mS2y1dP9ctassq6iNFMCKK0nplATVqnaTCtZCSJqqXPJmBAlq2rGiKoLmMqKmtoUpSJCaqLYVJo8HyF2ODu4DvZfYC3vQruDsOeU8N8W_NCC_7fgNEmXB6kL_mPQsefvfgguvclZUSaIFjnJfwAG8Wdo
ContentType Paper
Copyright 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 7ST
7TG
8FD
8FE
8FG
AAFGM
ABQRF
ABUWG
ADZZV
AEUYN
AFKRA
AFLLJ
AFOKG
AGAJT
AQTIP
ARAPS
AZQEC
BENPR
BGLVJ
C1K
CCPQU
DWQXO
H8D
HCIFZ
KL.
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQCXX
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
SQOEQ
UNPAY
DOI 10.1002/essoar.10501403.1
DatabaseName Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central Korea - hybrid linking
Technology Collection - hybrid linking
ProQuest Central (Alumni)
ProQuest Central (Alumni) - hybrid linking
ProQuest One Sustainability
ProQuest Central UK/Ireland
SciTech Premium Collection - hybrid linking
Advanced Technologies & Aerospace Collection - hybrid linking
ProQuest Central Essentials - hybrid linking
ProQuest Women's & Gender Studies - hybrid linking
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central - hybrid linking
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
ProQuest One Sustainability - hybrid linking
Unpaywall
DatabaseTitle Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 10.1002/essoar.10501403.1
GroupedDBID 7ST
7TG
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
C1K
CCPQU
DWQXO
H8D
HCIFZ
KL.
L7M
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
SOI
UNPAY
ID FETCH-LOGICAL-p711-dba1186f4d627d8f97c7b0b8ce3c22bb5278220d84a9c71f8f45d0bce0d29cf33
IEDL.DBID UNPAY
IngestDate Sun Sep 07 11:16:12 EDT 2025
Mon Jun 30 04:30:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p711-dba1186f4d627d8f97c7b0b8ce3c22bb5278220d84a9c71f8f45d0bce0d29cf33
Notes ObjectType-Article-1
content type line 51
ObjectType-Feature-2
SourceType-Working Papers-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/essoar.10501403.1
PQID 2451401430
PQPubID 4882998
ParticipantIDs unpaywall_primary_10_1002_essoar_10501403_1
proquest_journals_2451401430
PublicationCentury 2000
PublicationDate 20191220
PublicationDateYYYYMMDD 2019-12-20
PublicationDate_xml – month: 12
  year: 2019
  text: 20191220
  day: 20
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Earth and Space Science Open Archive ESSOAr
PublicationYear 2019
Publisher American Geophysical Union
Publisher_xml – name: American Geophysical Union
Score 1.5819654
Snippet Urban areas (i.e. cities, towns and suburbs) provide a home to over 70% of the EU‑population, and this number is expected to exceed 80% by 2050 (Tapia et al.,...
SourceID unpaywall
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Climate change
Climate models
Cloudbursts
Digital Elevation Models
Extreme weather
Flood hazards
Flooding
Floods
Future climates
Hail
Hazard assessment
Heavy rainfall
Hydrologic models
Hydrology
Lidar
Mathematical models
Numerical models
Population density
Rain
Rainfall
Rainstorms
Spilling
Suburban areas
Suburbs
Two dimensional models
Urban areas
Urban environments
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60PehNUfHNHrzJ2mSzeQkiqTRU0VJ8gLewTz3UNMZU0V_vbJpUvXjOEpaZYb6Z3dnvQ-goNiF8YoIwziRhwneJgIUkltRQFbtMR_a9880oGD6wq0f_cQmN2rcwdqyyzYl1olZTac_Ie5T5thdgnnNevBKrGmVvV1sJDd5IK6izmmJsGXWpZcbqoG5_MBrftteZDu1B_pjy0srb2t7CO3H_lJYrs7zgnx98MvmFMuka6o55oct1tKTzDZTfcaPL7Da5HJ1ijlP-VpFmrB_gBoMBSR8gSOFk8gQbrZ5fMBSgeDyZvUNM4dROpOMh_4IQwMmCfxMnNS7iazsBjh9KwXOc2MH0TXSfDu4vhqRRRyBF6LpECQ69QWCYCmioIhOHMhSOiKT2JKVC-NRiv6MixmMZuiYyzFeOkNpRNJbG87ZQJ5_mehvhIGKGQzcZanCY8MJYQhsUeZGBaieQMd9B-62FsibC37Iff-yg44XVsmLOkZHN2ZBpNjd31po7c3f__9keWoWSpFZooM4-6lTlTB8A7FfisPHlNzKPsAA
  priority: 102
  providerName: ProQuest
Title Safer_RAIN: a Fast-Processing DEM-Based Algorithm for Pluvial Flood Hazard Assessment Across Large Urban Areas
URI https://www.proquest.com/docview/2451401430
https://doi.org/10.1002/essoar.10501403.1
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFA66HbypqDiZIwdvktmmaZt668Q6RcdQB3oqSZqoOLvRdYr79b64bqh40HPeIby88L6P9-ULQgeRCWGJScIEU4RJ3yUSAkmkqKFZ5DLN7Xvnq17QHbCLO_-uMou2b2G-z-_pEVz3kSjsb7SWCnhtIDr1wAfYXUP1Qa8f3y8mlb_FfkONa9N8LN7fxHD4pYEk63Pp1eTTd9DqRp7b01K21eyHK-Of9raB6n0x1sUmWtH5FspvhNFFeh2f946xwImYlKSS_0NbwpBo0oFWleF4-DAqnsrHFwxAFfeH01eoPZxY5TruihmUCo6XPp04_uyf-NIqxfGgkCLHsRWwb6Pb5PT2pEuqXxTIOHRdkkkBHCIwLAtomHEThSqUjuRKe4pSKX1qMYKTcSYiFbqGG-ZnjlTayWikjOftoFo-yvUuwgFnRgDrDDUcrPTCSAFd4h43gIoCFYkGai7SnVY3YZJS5lsOxzyngQ6XR5CO514a6dw1mabzXKaLXKbu3r-im6hWFlO9DwChlC20ypOzFqp3Tnv961ZVKB8Vjb5-
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF0hcqC3olJBC-0e4FRtsdfrj62EkClESQlRBEHittpPOATHOAlR-G_8t84mNtBLb5xt-fBmPPNmd2YeQvvcpfCIKcIk04SpOCQKXiRcU0cND5nN_LzzRT_pXLM_N_HNGnpuZmF8W2UTE5eB2oy1PyM_pCz2tQCLguPygXjVKH-72khoyFpawRwtV4zVgx3ndjGHEm5y1D0Fex9Q2j4b_u6QWmWAlGkYEqMkcOzEMZPQ1GSOpzpVgcq0jTSlSsXU59DAZExynYYucyw2gdI2MJRr589DIQO0WMQ41H6tk7P-4LK5PQ3oIYSrsay8mq4vZaKf4T9MdmNWlHIxl6PRm6TW_ohaA1naahOt2eITKq6ks5W4zLv9X1jitpxMST1FANkNg73ICWQ8g_PRLeAyvbvHwHfxYDR7BBfGbd8AjzvyCTwO5y_rPnG-TMO45xvO8XWlZIFz3we_hYbvAdNntF6MC7uNcJIxJ6F4TS34h4pSrqHqyqLMAblKNJc7aLdBSNQ_1ES8mn8H_XhBTZSrlRxitXyZihXcooFbhF_-_7HvaKMzvOiJXrd__hV9ADa0FIegwS5an1YzuweMY6q-1XbFSLyzJ_0F6_7tDA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6yHbypqDiZkoM3yWzT9Je3KpYpOoZuME8lSRMVaze6TnF_vS9rN5x40HPeIby88L6P9-ULQieh9mGJCcI4k4QJ1yYCAkkoqaZpaDMVmPfOdz2vO2Q3I3dUm0WbtzDr83t6Btd9zAvzG62hAk4HiE7TcwF2N1Bz2OtHj8tJ5W-xa6hxc5ZP-OcHz7JvDSTeqqRX04XvoNGNvHZmpejI-Q9Xxj_tbRs1-3yiih20ofJdlD9wrYrkPrrunWOOYz4tSS3_h7aEIdHkAlpViqPsaVy8lM9vGIAq7mezd6g9HBvlOu7yOZQKjlY-nTha9E98a5TieFgInuPICNj30CC-Glx2Sf2LApn4tk1SwYFDeJqlHvXTQIe-9IUlAqkcSakQLjUYwUoDxkPp2zrQzE0tIZWV0lBqx9lHjXycqwOEvYBpDqzTV3CwwvFDCXQpcAINqMiTIW-h9jLdSX0TpgllruFwzLFa6HR1BMmk8tJIKtdkmlS5TJa5TOzDf0W3UaMsZuoIAEIpjuvS-ALB8bv-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safer_RAIN%3A+a+Fast-Processing+DEM-Based+Algorithm+for+Pluvial+Flood+Hazard+Assessment+Across+Large+Urban+Areas&rft.jtitle=Earth+and+Space+Science+Open+Archive+ESSOAr&rft.au=Castellarin%2C+Attilio&rft.au=Samela%2C+Caterina&rft.au=Persiano%2C+Simone&rft.au=Bagli%2C+Stefano&rft.date=2019-12-20&rft.pub=American+Geophysical+Union&rft_id=info:doi/10.1002%2Fessoar.10501403.1