融合半监督学习的无监督遥感影像场景分类

自监督学习可以不依赖样本标签对遥感影像进行特征提取, 但是特征分类仍然依赖有监督方法。为了克服有监督特征分类过程的不足, 实现遥感影像特征的无监督自动分类, 本文提出一种融合半监督学习的无监督语义聚类方法。首先, 使用自监督学习提取遥感影像特征, 抽象出图像包含的高层语义信息; 然后, 基于特征相似度寻找每个样本最相似的近邻, 使用在线聚类将相似样本聚为一类, 训练一个线性分类器; 最后, 根据聚类结果为高置信度样本生成伪标签, 构造标注样本集, 使用半监督方法对模型微调。在4个公开遥感影像场景分类数据集EuroSAT、GID、AID和NWPU-RESISC45上进行验证, 分类精度分别达到了...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 51; no. 5; pp. 691 - 702
Main Authors 白坤, 慕晓冬, 陈雪冰, 朱永清, 尤轩昂
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 01.05.2022
火箭军工程大学作战保障学院,陕西 西安 710025%61068 部队,陕西 西安 710100
Subjects
Online AccessGet full text
ISSN1001-1595
1001-1595
DOI10.11947/j.AGCS.2022.20210270

Cover

Abstract 自监督学习可以不依赖样本标签对遥感影像进行特征提取, 但是特征分类仍然依赖有监督方法。为了克服有监督特征分类过程的不足, 实现遥感影像特征的无监督自动分类, 本文提出一种融合半监督学习的无监督语义聚类方法。首先, 使用自监督学习提取遥感影像特征, 抽象出图像包含的高层语义信息; 然后, 基于特征相似度寻找每个样本最相似的近邻, 使用在线聚类将相似样本聚为一类, 训练一个线性分类器; 最后, 根据聚类结果为高置信度样本生成伪标签, 构造标注样本集, 使用半监督方法对模型微调。在4个公开遥感影像场景分类数据集EuroSAT、GID、AID和NWPU-RESISC45上进行验证, 分类精度分别达到了94.84%、63.55%、76.42%和86.24%。本文方法结合了在线聚类和半监督学习的优点, 缓解了已有方法存在的误差积累和样本利用不充分的问题, 在完全不使用标注样本的情况下, 充分利用自监督特征训练分类模型, 对遥感影像进行场景分类, 达到接近有监督学习的分类效果, 具有良好的应用价值。
AbstractList P237; 自监督学习可以不依赖样本标签对遥感影像进行特征提取,但是特征分类仍然依赖有监督方法.为了克服有监督特征分类过程的不足,实现遥感影像特征的无监督自动分类,本文提出一种融合半监督学习的无监督语义聚类方法.首先,使用自监督学习提取遥感影像特征,抽象出图像包含的高层语义信息;然后,基于特征相似度寻找每个样本最相似的近邻,使用在线聚类将相似样本聚为一类,训练一个线性分类器;最后,根据聚类结果为高置信度样本生成伪标签,构造标注样本集,使用半监督方法对模型微调.在4个公开遥感影像场景分类数据集EuroSAT、GID、AID和NWPU-RESISC45上进行验证,分类精度分别达到了94.84%、63.55%、76.42%和86.24%.本文方法结合了在线聚类和半监督学习的优点,缓解了已有方法存在的误差积累和样本利用不充分的问题,在完全不使用标注样本的情况下,充分利用自监督特征训练分类模型,对遥感影像进行场景分类,达到接近有监督学习的分类效果,具有良好的应用价值.
自监督学习可以不依赖样本标签对遥感影像进行特征提取, 但是特征分类仍然依赖有监督方法。为了克服有监督特征分类过程的不足, 实现遥感影像特征的无监督自动分类, 本文提出一种融合半监督学习的无监督语义聚类方法。首先, 使用自监督学习提取遥感影像特征, 抽象出图像包含的高层语义信息; 然后, 基于特征相似度寻找每个样本最相似的近邻, 使用在线聚类将相似样本聚为一类, 训练一个线性分类器; 最后, 根据聚类结果为高置信度样本生成伪标签, 构造标注样本集, 使用半监督方法对模型微调。在4个公开遥感影像场景分类数据集EuroSAT、GID、AID和NWPU-RESISC45上进行验证, 分类精度分别达到了94.84%、63.55%、76.42%和86.24%。本文方法结合了在线聚类和半监督学习的优点, 缓解了已有方法存在的误差积累和样本利用不充分的问题, 在完全不使用标注样本的情况下, 充分利用自监督特征训练分类模型, 对遥感影像进行场景分类, 达到接近有监督学习的分类效果, 具有良好的应用价值。
Author 陈雪冰
白坤
慕晓冬
尤轩昂
朱永清
AuthorAffiliation 火箭军工程大学作战保障学院,陕西 西安 710025%61068 部队,陕西 西安 710100
AuthorAffiliation_xml – name: 火箭军工程大学作战保障学院,陕西 西安 710025%61068 部队,陕西 西安 710100
Author_FL ZHU Yongqing
CHEN Xuebing
MU Xiaodong
BAI Kun
YOU Xuanang
Author_FL_xml – sequence: 1
  fullname: BAI Kun
– sequence: 2
  fullname: MU Xiaodong
– sequence: 3
  fullname: CHEN Xuebing
– sequence: 4
  fullname: ZHU Yongqing
– sequence: 5
  fullname: YOU Xuanang
Author_xml – sequence: 1
  fullname: 白坤
– sequence: 2
  fullname: 慕晓冬
– sequence: 3
  fullname: 陈雪冰
– sequence: 4
  fullname: 朱永清
– sequence: 5
  fullname: 尤轩昂
BookMark eNpNj81Kw0AUhQepYK19BFfiMvXOTGYysyxBq1BwYfdlkkzUIkltLLoVixShqCvxvyC6E-lSxbdxEn0LWyLo5pzL4eNcziwqRHGkEZrHUMFY2s5Sq1KtuRsVAoRMBANxYAoVMQC2MJOs8O-eQeUk2fYAmE0dRmURya-7gTnrm8FJdn2e3T6Y56fP12F21UsvhnnyffiY9u7Nx8gcnZqbt_TyxfSPs9H7HJoO1U6iy79eQo2V5Ya7atXXa2tutW61mRBW4MuAONrzKBU2UTYojrWgXPsioAFhIRM64JSTkGvq2NzXmGPCFZWeDJXgtIQW89p9FYUq2my24m4nGj9s-lsH3mQ1MAAx5hZyrt2Jd7s62fsDCRfAOKO2pD95RWsx
ClassificationCodes P237
ContentType Journal Article
Copyright May 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: May 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2022.20210270
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database (ProQuest)
Environmental Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL Unsupervised remote sensing image scene classification based on semi-supervised learning
EISSN 1001-1595
EndPage 702
ExternalDocumentID chxb202205008
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (61773389)
GroupedDBID -01
3V.
5VS
5XA
5XB
7X2
8FE
8FH
8FK
92E
92I
ABJNI
ABUWG
ACGFS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CW9
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
TCJ
TGP
U1G
U5K
2B.
4A8
93N
IPNFZ
PMFND
PSX
RIG
ID FETCH-LOGICAL-p588-dc9d27ebb33842a40a61e836ec8d3d25f58ed6362f6e3746ce16126a39b9fa863
IEDL.DBID BENPR
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Sun Jul 13 04:15:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 在线聚类
自监督
遥感影像
场景分类
半监督
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p588-dc9d27ebb33842a40a61e836ec8d3d25f58ed6362f6e3746ce16126a39b9fa863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2680565349?pq-origsite=%requestingapplication%&accountid=15518
PQID 2680565349
PQPubID 5229093
PageCount 12
ParticipantIDs wanfang_journals_chxb202205008
proquest_journals_2680565349
PublicationCentury 2000
PublicationDate 20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 20220501
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Ce hui xue bao
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2022
Publisher Surveying and Mapping Press
火箭军工程大学作战保障学院,陕西 西安 710025%61068 部队,陕西 西安 710100
Publisher_xml – name: Surveying and Mapping Press
– name: 火箭军工程大学作战保障学院,陕西 西安 710025%61068 部队,陕西 西安 710100
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.3529463
Snippet 自监督学习可以不依赖样本标签对遥感影像进行特征提取, 但是特征分类仍然依赖有监督方法。为了克服有监督特征分类过程的不足, 实现遥感影像特征的无监督自动分类, 本文提出...
P237; 自监督学习可以不依赖样本标签对遥感影像进行特征提取,但是特征分类仍然依赖有监督方法.为了克服有监督特征分类过程的不足,实现遥感影像特征的无监督自动分类,本文...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 691
SubjectTerms Classification
Clustering
Feature extraction
Image classification
Labels
Learning
Remote sensing
Semantics
Semi-supervised learning
Title 融合半监督学习的无监督遥感影像场景分类
URI https://www.proquest.com/docview/2680565349
https://d.wanfangdata.com.cn/periodical/chxb202205008
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1001-1595
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib005437539
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1001-1595
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0058465
  issn: 1001-1595
  databaseCode: BENPR
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC6SDYIXiS-SGJc9iLcxM_2o6T6IrCExKC4-IuQW-jUGIbvRjai5iUGCENST-A5IchPJUcV_4-zqv7B7dja7uXgbZnou1dX9fVXd9RXAOaERbZwFMTzNImZlHCkT6yiTHu0pRxMXCf3rDVy4w64u8aURaPRrYcK1yv6eWGzUtmVCjnyGoPBYzSmTl9buR6FrVDhd7bfQUGVrBXuxkBgbhTESlLEqMHZ5rnHj1iECT8UwoHn_GxLs4ox6_n4A8EGNneFAUI8nNKUoDwh2QG9enKf6oNwTA17WCCWSpTP3LtSvzN72ISgJBV8htErjQzz2yCPVzFTz7hCgzY_DsZKJ1uo91zkOIxsrJ2Ci3g658dbqk9r5WvHcS320T4L882k7f7WVb7_ovn_d_fgl_7r3-_tO991m581O783fp7udzc_5r_382cv8w4_O22_51vPu_s9TsDg_tzi7EJWNF6I17heONdKS1Gntw1dGFIsVJk5QdEZYagnPuHAWPfJl6Ki3j3GeNhJUVGqZKYH0NFSaraabgBpPtDSILpbGUwXMpHAiVok0KaEoFJuE6b49lsvF014eTPUkVEsbDb6alceaFPXBfjan_v__GTgahvYuKE5DZf3BQ3fWk4h1XS09owqj126Kf7ipzww
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NaxQxFA-1RfQiftLWWueg3sZm8vEmORRZa-vWtovoCr0tmSRjEbpb3UqtN7FIEYp6Er8LojeRHlX63zi7-l-YzM52txdvvQ0zZBjyfpP3-73kvYfQBZEAGJz6YngJC5mROFQaJ2EqnbenHDTOA_oLFSjfYTcW-eIA2u3mwvhjld01MV-oTUP7GPkEAeF8NadMXlm5H_quUX53tdtCQxWtFcxkXmKsSOyYs-trTsI1J2evOXtfJGRmujpVDosuA-EKdygxWhoS2yRxWo0RxbCCyAoKVgtDDeEpF9aAW-ZTsDRmoK3jSAQUlYlMlQDqXnsIDTH3YU77DV2drty8tU8vUNHvPx3c--qDcUadXNjjE774O4Ne_T4e0ZiC3OPznizwfPsWR6HjIbxISYokiyfuXS5dn7rtFC_x-WVeycV4H20-vKbqqarf7fOfM8fRsYL4BqUOUk-ggcdLJ9FwqelD8Y3l9eBSkF93Ii3NU0j--biVvdzMtp63371qf_icffv6-8d2--1G6_V2587fJ19aG5-y3Z3s6Yvs_c_Wm-_Z5rP2zq_TqHoQFjiDBuuNuh1GAY8SqQEsltoxE0ilsAKrSOqYUBCKjaCx7nzUin-1WeshawSNF3PUe6qXHiUkT0d21hz9__jz6Ei5ujBfm5-tzJ1FR_2wztnIMTS4-uChPef4y2oyXqAkQLUDxuU_kQsKSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E5%8D%8A%E7%9B%91%E7%9D%A3%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%97%A0%E7%9B%91%E7%9D%A3%E9%81%A5%E6%84%9F%E5%BD%B1%E5%83%8F%E5%9C%BA%E6%99%AF%E5%88%86%E7%B1%BB&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E7%99%BD%E5%9D%A4&rft.au=%E6%85%95%E6%99%93%E5%86%AC&rft.au=%E9%99%88%E9%9B%AA%E5%86%B0&rft.au=%E6%9C%B1%E6%B0%B8%E6%B8%85&rft.date=2022-05-01&rft.pub=%E7%81%AB%E7%AE%AD%E5%86%9B%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E4%BD%9C%E6%88%98%E4%BF%9D%E9%9A%9C%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710025%2561068+%E9%83%A8%E9%98%9F%2C%E9%99%95%E8%A5%BF+%E8%A5%BF%E5%AE%89+710100&rft.issn=1001-1595&rft.volume=51&rft.issue=5&rft.spage=691&rft.epage=702&rft_id=info:doi/10.11947%2Fj.AGCS.2022.20210270&rft.externalDocID=chxb202205008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg