GNSS/MODIS信号紧耦合水汽层析算法
GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一。目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何缺陷的研究热点。本文利用Terra卫星上的中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)提供的观测数据,首先分析了传统体素模型融合MODIS信号的不足;然后提出了基于体素节点模型的GNSS/MODIS信号紧耦合水汽层析算法,该算法将高分辨率MODIS PWV以三维信号的形式引入层析模型中;最后利用2016年7月徐州地区的15幅MODIS影像及同步GNS...
Saved in:
Published in | Ce hui xue bao Vol. 50; no. 4; pp. 496 - 508 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
Beijing
Surveying and Mapping Press
01.04.2021
中国矿业大学自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116 中国矿业大学环境与测绘学院,江苏 徐州 221116%江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-1595 1001-1595 |
DOI | 10.11947/j.AGCS.2021.20200222 |
Cover
Abstract | GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一。目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何缺陷的研究热点。本文利用Terra卫星上的中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)提供的观测数据,首先分析了传统体素模型融合MODIS信号的不足;然后提出了基于体素节点模型的GNSS/MODIS信号紧耦合水汽层析算法,该算法将高分辨率MODIS PWV以三维信号的形式引入层析模型中;最后利用2016年7月徐州地区的15幅MODIS影像及同步GNSS数据对3种模型的层析结果质量进行了评估。试验结果表明:利用本文所提出的紧耦合算法,层析模型的平均有效观测信号数量提高了34.15%,层析结果平均RMSE(root mean square error)值降低了25.10%。此外,以邻近时刻探空站数据作为参考值,发现0~2 km的近地层,紧耦合算法的层析结果明显优于传统算法,这表明融合MODIS观测信号可改善近地层三维水汽场的重构质量。 |
---|---|
AbstractList | P228; GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一.目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何缺陷的研究热点.本文利用Terra卫星上的中分辨率成像光谱仪(moderate resolution maging spectrorad ometer,MOD S)提供的观测数据,首先分析了传统体素模型融合MODIS信号的不足;然后提出了基于体素节点模型的GNSS/MODIS信号紧耦合水汽层析算法,该算法将高分辨率MODIS PWV以三维信号的形式引入层析模型中;最后利用2016年7月徐州地区的15幅MODIS影像及同步GNSS数据对3种模型的层析结果质量进行了评估.试验结果表明:利用本文所提出的紧耦合算法,层析模型的平均有效观测信号数量提高了34.15%,层析结果平均RMSE(root mean square error)值降低了25.10%.此外,以邻近时刻探空站数据作为参考值,发现0~2 km的近地层,紧耦合算法的层析结果明显优于传统算法,这表明融合MODIS观测信号可改善近地层三维水汽场的重构质量. GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一。目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何缺陷的研究热点。本文利用Terra卫星上的中分辨率成像光谱仪(moderate resolution imaging spectroradiometer,MODIS)提供的观测数据,首先分析了传统体素模型融合MODIS信号的不足;然后提出了基于体素节点模型的GNSS/MODIS信号紧耦合水汽层析算法,该算法将高分辨率MODIS PWV以三维信号的形式引入层析模型中;最后利用2016年7月徐州地区的15幅MODIS影像及同步GNSS数据对3种模型的层析结果质量进行了评估。试验结果表明:利用本文所提出的紧耦合算法,层析模型的平均有效观测信号数量提高了34.15%,层析结果平均RMSE(root mean square error)值降低了25.10%。此外,以邻近时刻探空站数据作为参考值,发现0~2 km的近地层,紧耦合算法的层析结果明显优于传统算法,这表明融合MODIS观测信号可改善近地层三维水汽场的重构质量。 |
Author | 张书毕 马朋序 郑南山 刘鑫 张文渊 丁楠 |
AuthorAffiliation | 中国矿业大学自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116;中国矿业大学环境与测绘学院,江苏 徐州 221116%江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116 |
AuthorAffiliation_xml | – name: 中国矿业大学自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116;中国矿业大学环境与测绘学院,江苏 徐州 221116%江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116 |
Author_FL | DING Nan MA Pengxu ZHANG Shubi ZHANG Wenyuan LIU Xin ZHENG Nanshan |
Author_FL_xml | – sequence: 1 fullname: ZHANG Wenyuan – sequence: 2 fullname: ZHANG Shubi – sequence: 3 fullname: ZHENG Nanshan – sequence: 4 fullname: DING Nan – sequence: 5 fullname: LIU Xin – sequence: 6 fullname: MA Pengxu |
Author_xml | – sequence: 1 fullname: 张文渊 – sequence: 2 fullname: 张书毕 – sequence: 3 fullname: 郑南山 – sequence: 4 fullname: 丁楠 – sequence: 5 fullname: 刘鑫 – sequence: 6 fullname: 马朋序 |
BookMark | eNrjYmDJy89LZWCQNTTQMzS0NDHXz9JzdHcO1jMyMDIEEQYGRkZGTAychgYGhrqGppamLEhsDgau4uIsAwNTCxMzU04GbXe_4GB9X38Xz-An-xc-7d_-fMvyFw3Lnk7oeLZhy7ONe59ubHo2b8LzddOfbZ7Kw8CalphTnMoLpbkZQtxcQ5w9dH383T2dHX10C0wtLHRNzQyNzC1NLcxNDBJNDM1TTCwMTU0NTVINDQ1SLA2Mki2NklKS05KMTRKBTjBJMkxJNrQ0TU02NUoFiiUZmhpzM6hCjC1PzEtLzEuPz8ovLcoDWhifnFGRBPKkgYmBgQVQnTJEXUFRfmFpanEJQqGRqYWREdCLxhbGABjaW9Y |
ClassificationCodes | P228 |
ContentType | Journal Article |
Copyright | Apr 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Apr 2021. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11947/j.AGCS.2021.20200222 |
DatabaseName | ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection (UHCL Subscription) Biological Sciences Agricultural Science Database Biological Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitle_FL | Tightly coupled water vapor tomography algorithm for combining GNSS and MODIS signals |
EISSN | 1001-1595 |
EndPage | 508 |
ExternalDocumentID | chxb202104008 |
GrantInformation_xml | – fundername: 国家自然科学基金(41774026; 41904013; 41974039) funderid: 国家自然科学基金(41774026; 41904013; 41974039) |
GroupedDBID | -01 3V. 5VS 5XA 5XB 7X2 8FE 8FH 8FK 92E 92I ABJNI ABUWG ACGFS AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS AZQEC BBNVY BENPR BHPHI BKSAR CCEZO CCPQU CCVFK CW9 DWQXO GNUQQ HCIFZ LK8 M0K M7P OK1 P2P PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY TCJ TGP U1G U5K 2B. 4A8 93N IPNFZ PMFND PSX RIG |
ID | FETCH-LOGICAL-p588-56127958740a417d4815514e110d902c92bdcfb34a5844b1dc195ec52eb34b153 |
IEDL.DBID | BENPR |
ISSN | 1001-1595 |
IngestDate | Thu May 29 04:11:08 EDT 2025 Fri Jul 25 11:59:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | GNSS水汽层析 体素节点模型 探空站 Kriging插值 MODIS PWV |
Language | Chinese English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p588-56127958740a417d4815514e110d902c92bdcfb34a5844b1dc195ec52eb34b153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2582205838?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2582205838 |
PQPubID | 5229093 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_chxb202104008 proquest_journals_2582205838 |
PublicationCentury | 2000 |
PublicationDate | 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 20210401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Ce hui xue bao |
PublicationTitle_FL | Acta Geodaetica et Cartographica Sinica |
PublicationYear | 2021 |
Publisher | Surveying and Mapping Press 中国矿业大学自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116 中国矿业大学环境与测绘学院,江苏 徐州 221116%江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116 |
Publisher_xml | – name: Surveying and Mapping Press – name: 中国矿业大学环境与测绘学院,江苏 徐州 221116%江苏师范大学地理测绘与城乡规划学院,江苏 徐州 221116 – name: 中国矿业大学自然资源部国土环境与灾害监测重点实验室,江苏 徐州 221116 |
SSID | ssj0058465 ssib005437539 ssib038074662 ssib051373695 ssib002263888 ssib000862384 |
Score | 2.2019005 |
Snippet | GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一。目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号几何... P228; GNSS水汽层析技术凭借高精度、高时空分辨率及全天候监测等优点,已成为探测大气水汽最具潜力的技术之一.目前,融合多源大气遥感数据逐步成为弥补传统层析模型GNSS信号... |
SourceID | wanfang proquest |
SourceType | Aggregation Database |
StartPage | 496 |
SubjectTerms | Algorithms Atmospheric water Global navigation satellite system Image reconstruction Mean square errors MODIS Radiosondes Remote sensing Root-mean-square errors Spectroradiometers Temporal resolution Tomography Water vapor |
Title | GNSS/MODIS信号紧耦合水汽层析算法 |
URI | https://www.proquest.com/docview/2582205838 https://d.wanfangdata.com.cn/periodical/chxb202104008 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1001-1595 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib005437539 issn: 1001-1595 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1001-1595 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0058465 issn: 1001-1595 databaseCode: BENPR dateStart: 20100201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07SwNBEB40QbARn_gMKcRGzlz2du9RiMSo8YHxEQU7uX0pghc1itqJlZ1pxE6w0U4UBSvxz5joz3D3cofa2N1yd8XOLPPNN7uzH8CwSX0hPZcokiOFgaktDdeS1JCuyUxuI-QT3Si8WLRn1_H8BtlogmLcC6OPVcYxMQzUvMx0jTyDiKt7Ql3LndjbN7RqlN5djSU0_EhagY-HV4w1QxJpVeUEJCeni8urcWzWaEvC_U9FohWQk6inRzF5J7MzlivkS4oyIs0bUdgm-ifvbDn2A-kHW78AaKYd2qLMMZ1ruLoDmkTQCb25iq5ll3dP0yPp8LlRqqh0wWihWCplFpem5kof77e1y9fPl_uvs7ta9aL--FJ_eqs9nddvqp8P1_Xnq25Ym5ley88akTSCsUfU0taSlo5HtJyej7MO1zeuqMxHKCznnomYhyhnklrYVzPGNMtZ1iOCEaSosxoSqwcSQTkQvZCmgnCMfewwi2ObUYVY0pTUdpjDVD4k-mAwtsBmtLwrmz_O6INUZJWft2z7hGor6vjg9v___wC06k8bZ2EGIXF4cCSGFMwf0lTkuxQ0L6y431CNsF0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQMUhKTE2ztDAFdnLSUnVNkszSdC2M05J00ywMkg1SzIyMEk1BG4V9_cw8Qk28IkwjmBj2wvbCgJZVwspEcEGdkp8MGiPXNzK1AO0JtTC2sC8o1AXdGgWaXYVdoZEIvVohxRZ8xBh0Y4d3amU5sAtXbOvpAoxvVSMjN9cQZw9d6C0DugWmwFQCuh3S3NIUdDNdoomheQro8BJgIyIVWC2mWBoYJVsaJaUkpyUZmyQCq2qTJMOUZENL09RkUyNgLxTIBV0aAawBWIGtDmNgpmJ1cvULCIJVBaDK3RQ83QrsswPbDabQLUSGlibm-ll6ju7OwcAeqhGom2oE3pWK0sxlL0_MS0vMS0eq79wEGfihDVUFR0jKEmJgSs0TZpBwLAYNnefnViqoKYDZkJGRYhEGbXe_4GB9X38Xz-An-xc-7d_-fMvyFw3Lnk7oeLZhy7ONe59ubHo2b8LzddOfbZ4qyhBCizASY2DJy89LlWBQSEo1TTExSTQxTzZOMTFLTgJWkGkGaUlm5snmycDmV6okgwwsBOKhuak4HhH3kgxy0FBByCZnVCSBQhFUHFlI4dcvz8DpEeLrE-_j6ectzcAF0gZZhiPDwFJSVJoqC2xhlCTJQeNRgSGexikHAFzd6VU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GNSS%2FMODIS%E4%BF%A1%E5%8F%B7%E7%B4%A7%E8%80%A6%E5%90%88%E6%B0%B4%E6%B1%BD%E5%B1%82%E6%9E%90%E7%AE%97%E6%B3%95&rft.jtitle=Ce+hui+xue+bao&rft.au=%E5%BC%A0%E6%96%87%E6%B8%8A&rft.au=%E5%BC%A0%E4%B9%A6%E6%AF%95&rft.au=%E9%83%91%E5%8D%97%E5%B1%B1&rft.au=%E4%B8%81%E6%A5%A0&rft.date=2021-04-01&rft.pub=Surveying+and+Mapping+Press&rft.issn=1001-1595&rft.eissn=1001-1595&rft.volume=50&rft.issue=4&rft.spage=496&rft_id=info:doi/10.11947%2Fj.AGCS.2021.20200222 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg |