多波束与侧扫声呐图像的迭代自适应配准方法

针对目前多波束与侧扫声呐图像配准方法未顾及图像形变细节信息及二者尺度差异, 存在局部纹理失真的问题, 本文提出了结合小波变换、仿射变换和Demons配准算法的迭代自适应配准方法。利用小波变换提取侧扫声呐图像低频信息并重构图像, 先后采用仿射变换和Demons算法将重构图像与多波束图像进行迭代自适应配准, 获取配准变换模型, 利用该模型对侧扫声呐原图像进行整体配准变换, 获得多波束图像地理坐标约束的侧扫声呐图像。实例验证结果表明: 该方法能有效实现多波束与侧扫声呐图像配准, 获得位置准确且纹理丰富的融合声呐图像。...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 51; no. 9; pp. 1951 - 1958
Main Authors 章宁, 金绍华
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 01.09.2022
海军大连舰艇学院军事海洋与测绘系,辽宁 大连 116018
Subjects
Online AccessGet full text
ISSN1001-1595
1001-1595
DOI10.11947/j.AGCS.2022.20210023

Cover

More Information
Summary:针对目前多波束与侧扫声呐图像配准方法未顾及图像形变细节信息及二者尺度差异, 存在局部纹理失真的问题, 本文提出了结合小波变换、仿射变换和Demons配准算法的迭代自适应配准方法。利用小波变换提取侧扫声呐图像低频信息并重构图像, 先后采用仿射变换和Demons算法将重构图像与多波束图像进行迭代自适应配准, 获取配准变换模型, 利用该模型对侧扫声呐原图像进行整体配准变换, 获得多波束图像地理坐标约束的侧扫声呐图像。实例验证结果表明: 该方法能有效实现多波束与侧扫声呐图像配准, 获得位置准确且纹理丰富的融合声呐图像。
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1001-1595
1001-1595
DOI:10.11947/j.AGCS.2022.20210023