GNSS大气加权平均温度经验模型精化方法的建立和分析

加权平均温度Tm作为对流层湿延迟转换为大气可降水量的关键参数,在GNSS气象学研究中发挥着重要作用。Tm经验模型的构建,可以通过将测站位置和时间信息作为输入参数快速获取Tm估值,但其精度往往受限,尤其在某些局部区域。本文提出了一种Tm经验模型精化方法,引入了地表气温数据,通过最小二乘快速获取精化系数,达到Tm的误差补偿作用。基于我国及邻近区域180个探空测站2011—2015年的数据,本文构建了基于GPT3的精化模型,并对其进行分析。数值结果表明,与Bevis模型、区域线性模型和GPT3模型相比,本文提出的精化模型估计Tm的精度分别提高了16.2%、13.5%和21.1%。另外,基于GPT3的...

Full description

Saved in:
Bibliographic Details
Published inCe hui xue bao Vol. 51; no. 11; pp. 2339 - 2345
Main Authors 杨飞, 郭际明, 陈明, 章迪
Format Journal Article
LanguageChinese
English
Published Beijing Surveying and Mapping Press 01.11.2022
中国矿业大学(北京)地球科学与测绘工程学院,北京 100083%武汉大学测绘学院,湖北 武汉430079%国家基础地理信息中心,北京 100830
Subjects
Online AccessGet full text
ISSN1001-1595
1001-1595
DOI10.11947/j.AGCS.2022.20210269

Cover

Abstract 加权平均温度Tm作为对流层湿延迟转换为大气可降水量的关键参数,在GNSS气象学研究中发挥着重要作用。Tm经验模型的构建,可以通过将测站位置和时间信息作为输入参数快速获取Tm估值,但其精度往往受限,尤其在某些局部区域。本文提出了一种Tm经验模型精化方法,引入了地表气温数据,通过最小二乘快速获取精化系数,达到Tm的误差补偿作用。基于我国及邻近区域180个探空测站2011—2015年的数据,本文构建了基于GPT3的精化模型,并对其进行分析。数值结果表明,与Bevis模型、区域线性模型和GPT3模型相比,本文提出的精化模型估计Tm的精度分别提高了16.2%、13.5%和21.1%。另外,基于GPT3的精化模型估计Tm表现出最优的时空分布结果,显著提高了高纬度地区Tm估计精度,有效解决了GPT3模型只能表现Tm季节性变化的缺陷。本文方法计算公式简便,可以快速推广至任意Tm经验模型,具有较高的使用价值。
AbstractList P228; 加权平均温度Tm作为对流层湿延迟转换为大气可降水量的关键参数,在GNSS气象学研究中发挥着重要作用.Tm经验模型的构建,可以通过将测站位置和时间信息作为输入参数快速获取Tm估值,但其精度往往受限,尤其在某些局部区域.本文提出了一种Tm经验模型精化方法,引入了地表气温数据,通过最小二乘快速获取精化系数,达到Tm的误差补偿作用.基于我国及邻近区域180个探空测站2011—2015年的数据,本文构建了基于GPT3的精化模型,并对其进行分析.数值结果表明,与Bevis模型、区域线性模型和GPT3模型相比,本文提出的精化模型估计Tm的精度分别提高了16.2%、13.5%和21.1%.另外,基于GPT3的精化模型估计Tm表现出最优的时空分布结果,显著提高了高纬度地区Tm估计精度,有效解决了G P T 3模型只能表现Tm季节性变化的缺陷.本文方法计算公式简便,可以快速推广至任意Tm经验模型,具有较高的使用价值.
加权平均温度Tm作为对流层湿延迟转换为大气可降水量的关键参数,在GNSS气象学研究中发挥着重要作用。Tm经验模型的构建,可以通过将测站位置和时间信息作为输入参数快速获取Tm估值,但其精度往往受限,尤其在某些局部区域。本文提出了一种Tm经验模型精化方法,引入了地表气温数据,通过最小二乘快速获取精化系数,达到Tm的误差补偿作用。基于我国及邻近区域180个探空测站2011—2015年的数据,本文构建了基于GPT3的精化模型,并对其进行分析。数值结果表明,与Bevis模型、区域线性模型和GPT3模型相比,本文提出的精化模型估计Tm的精度分别提高了16.2%、13.5%和21.1%。另外,基于GPT3的精化模型估计Tm表现出最优的时空分布结果,显著提高了高纬度地区Tm估计精度,有效解决了GPT3模型只能表现Tm季节性变化的缺陷。本文方法计算公式简便,可以快速推广至任意Tm经验模型,具有较高的使用价值。
Author 杨飞
郭际明
陈明
章迪
AuthorAffiliation 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083%武汉大学测绘学院,湖北 武汉430079%国家基础地理信息中心,北京 100830
AuthorAffiliation_xml – name: 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083%武汉大学测绘学院,湖北 武汉430079%国家基础地理信息中心,北京 100830
Author_FL ZHANG Di
CHEN Ming
YANG Fei
GUO Jiming
Author_FL_xml – sequence: 1
  fullname: YANG Fei
– sequence: 2
  fullname: GUO Jiming
– sequence: 3
  fullname: CHEN Ming
– sequence: 4
  fullname: ZHANG Di
Author_xml – sequence: 1
  fullname: 杨飞
– sequence: 2
  fullname: 郭际明
– sequence: 3
  fullname: 陈明
– sequence: 4
  fullname: 章迪
BookMark eNpNkM9LAkEcxYcwyMw_oVN0XJvv7MyOcxRJC6QOepf9MVtJrOYmdS8yUiiiPARKQfTzEnlJhf6bmaX_Is2gLu-9w4f34M2jWFANJEKLgFMAgvKVSiqTzxZTBBMyEcDEEjMoDhiDAUyw2L88h5JhuONgzKjJmSniKJffKBbV_aN-u1Jnt7p7pAZ91W3qj2c1fIhG518vbf10p3qt6P1TtTu6M9D96-jmWI2G0WtLXbbV6YnuXSygWd_eDWXy1xOolFstZdeMwmZ-PZspGDWWBoNg6UlbEELBFL4QYErLslzfSTs-UNdhlKUZx7Yk0vWI45se41R6lPgW45w6ZgItT2sP7MC3g61ypdqoB-PBsrt96EwuAMAAY25pytXq1b2GDPf_QMKtn984Nb8BNUhzng
ClassificationCodes P228
ContentType Journal Article
Copyright Nov 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Nov 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11947/j.AGCS.2022.20210269
DatabaseName ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
DocumentTitle_FL Establishment and analysis of a refinement method for the GNSS empirical weighted mean temperature model
EISSN 1001-1595
EndPage 2345
ExternalDocumentID chxb202211011
GrantInformation_xml – fundername: (北京市自然科学基金); (中国博士后科学基金); (中央高校基本科研业务费专项); (国家重点实验室开放基金); (地球空间环境与大地测量教育部重点试验室测绘基础研究基金); (国家自然科学基金); (国家自然科学基金)
  funderid: (北京市自然科学基金); (中国博士后科学基金); (中央高校基本科研业务费专项); (国家重点实验室开放基金); (地球空间环境与大地测量教育部重点试验室测绘基础研究基金); (国家自然科学基金); (国家自然科学基金)
GroupedDBID -01
3V.
5VS
5XA
5XB
7X2
8FE
8FH
8FK
92E
92I
ABJNI
ABUWG
ACGFS
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCEZO
CCPQU
CCVFK
CW9
DWQXO
GNUQQ
HCIFZ
LK8
M0K
M7P
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
TCJ
TGP
U1G
U5K
2B.
4A8
93N
IPNFZ
PMFND
PSX
RIG
ID FETCH-LOGICAL-p581-20edea9224139f9913e666cfb8bf14cb5458570ae2ecd2bf3d574ed42f65774b3
IEDL.DBID BENPR
ISSN 1001-1595
IngestDate Thu May 29 04:11:08 EDT 2025
Fri Jul 25 11:46:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords GNSS气象学
GPT3模型
加权平均温度
大气可降水量
Language Chinese
English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p581-20edea9224139f9913e666cfb8bf14cb5458570ae2ecd2bf3d574ed42f65774b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2761194774?pq-origsite=%requestingapplication%&accountid=15518
PQID 2761194774
PQPubID 5229093
PageCount 7
ParticipantIDs wanfang_journals_chxb202211011
proquest_journals_2761194774
PublicationCentury 2000
PublicationDate 20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221101
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Ce hui xue bao
PublicationTitle_FL Acta Geodaetica et Cartographica Sinica
PublicationYear 2022
Publisher Surveying and Mapping Press
中国矿业大学(北京)地球科学与测绘工程学院,北京 100083%武汉大学测绘学院,湖北 武汉430079%国家基础地理信息中心,北京 100830
Publisher_xml – name: Surveying and Mapping Press
– name: 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083%武汉大学测绘学院,湖北 武汉430079%国家基础地理信息中心,北京 100830
SSID ssib005437539
ssib038074662
ssib051373695
ssib002263888
ssib000862384
ssj0058465
Score 2.3723106
Snippet 加权平均温度Tm作为对流层湿延迟转换为大气可降水量的关键参数,在GNSS气象学研究中发挥着重要作用。Tm经验模型的构建,可以通过将测站位置和时间信息作为输入参数快速获...
P228; 加权平均温度Tm作为对流层湿延迟转换为大气可降水量的关键参数,在GNSS气象学研究中发挥着重要作用.Tm经验模型的构建,可以通过将测站位置和时间信息作为输入参数快速...
SourceID wanfang
proquest
SourceType Aggregation Database
StartPage 2339
SubjectTerms Accuracy
Atmospheric models
Empirical analysis
Error compensation
Mathematical models
Meteorology
Model accuracy
Parameters
Radiosondes
Seasonal variations
Spatial distribution
Surface temperature
Temporal distribution
Water vapor
Title GNSS大气加权平均温度经验模型精化方法的建立和分析
URI https://www.proquest.com/docview/2761194774
https://d.wanfangdata.com.cn/periodical/chxb202211011
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1001-1595
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib005437539
  issn: 1001-1595
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1001-1595
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0058465
  issn: 1001-1595
  databaseCode: BENPR
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQMfk25mrJtkZp6iC6yhTHUtTVPSdIEln2GypWmymUkaeIGsn5lHqIlXhGkEE4MfbC8MaFklrEwEF9Qp-cmgMXJ9I2B_G9jhBrZW7AsKdUG3RoFmV2FXaCRCr1ZIsQUfMcbMwGoEOhmLhYHVydUvIAilAW9sgVyhAdMf0oFdpibGwPY7vIIHncZuYoY4UM_U0Njc2MwS3sAG1d6m4PlUYKcc2DAwhe4RAjlUP0vP0d05GNgFNQJt-AJ1rcxQ27Hs5Yl5aYl56UgVmpsgAz-0JargCEk6QgxMVRnCDBKOxaCx8fzcSgU1BTAbMvRRLMLg5u4XHPx0yfJnG6Y87VrwbG7z052bn85tf7Zj5dNdy57v7n-5qufZioVP53U_37Tvac-0Z9N2Pts89fmslqe7dz1f3f10Us_TjrZn8yaIMoS4uYY4e-hCb2HQLTC1MATmotSU1ERL8PybZRowBo1TgT2e5LQki6Q0Q5PkJNDEm6m5QWKqUWpyilFSmnGKqblJaoqJUZqZKTCykozFGFjy8vNSJRgUUpITk8wtLZNT0ywSTUyMk5OAjQdjy6SU1DRgNzPRwFCSQQYWOPHQnFQcj4h3SQY5aIAhZJMzKpJAAQxsxBgaSuHXL83ABVIK2Ugow8BSUlSaKgtsUZQkyUGTiRwDs3egBQBXq9hV
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQSQMfk25mrJtkZp6iC6yhTHUtTVPSdIEln2GypWmymUkaeIGsn5lHqIlXhGkEE8Ne2F4Y0LJKWJkILqhT8pNBY-T6RsD-NrDDDWyt2BcU6oJujQLNrsKu0EiEXq2QYgs-Ygy6scM7tbIc2IUrtvV0Aca3qpGRm2uIs4cu9JYB3QJTC0NgKklNSU20BM8vWaYBXWicCmzRJ6clWSSlGZokJ4EmlkzNDRJTjVKTU4yS0oxTTM1NUlNMjNLMTIGOSTIGGsvMwGpibGIJ7PuxOrn6BQSh9BeMLZDrT2ByRzofzNTEGNhdgLcnQIe_m5ghzu8zNTQ2NzazhLfnQY0FU_D0rYGhLrAdYgrdkgQKF_0sPUd352Bgj9cItL8M1JMzQ202s5cn5qUl5qUj1Z9uggz80IavgiMkpQoxMFVlCDNIOBaDhuLzcysV1BTAbMhIS7EIg5u7X3Dw0yXLn22Y8rRrwbO5zU93bn46t_3ZjpVPdy17vrv_5aqeZysWPp3X_XzTvqc9055N2_ls89Tns1qe7t71fHX300k9Tzvans2bIMoQQovoEGNgycvPS5VgUEhJTkwyt7RMTk2zSDQxMU5OArZVjC2TUlLTgL3aRANDSQYZWODEQzNucTwimUkyyEEDDCGbnFGRBApgYJvJ0FAKv355Bk6PEF-feB9PP29pBi6QNsgeRhkGlpKi0lRZYGOmJEkOmmQUGOJpnEgBzNAT2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GNSS%E5%A4%A7%E6%B0%94%E5%8A%A0%E6%9D%83%E5%B9%B3%E5%9D%87%E6%B8%A9%E5%BA%A6%E7%BB%8F%E9%AA%8C%E6%A8%A1%E5%9E%8B%E7%B2%BE%E5%8C%96%E6%96%B9%E6%B3%95%E7%9A%84%E5%BB%BA%E7%AB%8B%E5%92%8C%E5%88%86%E6%9E%90&rft.jtitle=%E6%B5%8B%E7%BB%98%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E9%A3%9E&rft.au=%E9%83%AD%E9%99%85%E6%98%8E&rft.au=%E9%99%88%E6%98%8E&rft.au=%E7%AB%A0%E8%BF%AA&rft.date=2022-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%28%E5%8C%97%E4%BA%AC%29%E5%9C%B0%E7%90%83%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%B5%8B%E7%BB%98%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100083%25%E6%AD%A6%E6%B1%89%E5%A4%A7%E5%AD%A6%E6%B5%8B%E7%BB%98%E5%AD%A6%E9%99%A2%2C%E6%B9%96%E5%8C%97+%E6%AD%A6%E6%B1%89430079%25%E5%9B%BD%E5%AE%B6%E5%9F%BA%E7%A1%80%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC+100830&rft.issn=1001-1595&rft.volume=51&rft.issue=11&rft.spage=2339&rft.epage=2345&rft_id=info:doi/10.11947%2Fj.AGCS.2022.20210269&rft.externalDocID=chxb202211011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fchxb%2Fchxb.jpg