基于半监督学习的AES算法功耗分析

基于机器学习的功耗分析是目前功耗分析的主要研究方向之一, 属于建模类的攻击. 针对无掩码防护的AES算法实现, 本文将半监督机器学习算法 Tri-Training应用于功耗分析, 有效减少了用机器学习算法进行建模时所需要的有标记能量迹数量. 相较于基于有监督机器学习的建模类功耗分析, 使用Tri-Training算法可以有效减小对有标记能量迹的需求, 更具有现实意义. 然而, Tri-Training算法在初始分类器较弱时, 容易出现错误标记现象, 影响分类的准确率和建模的效率. 对此本文在使用Tri-Training算法进行建模时引入了阈值判断操作, 提高了分类的准确率, 并对比了不同阈值对...

Full description

Saved in:
Bibliographic Details
Published inJournal of Cryptologic Research Vol. 8; no. 4; p. 660
Main Authors Xiang-Bin, WANG, Yong-Juan, WANG, ZHAO, Yuan, GAO Guang-Pu, Qing-Jun, YUAN, 王相宾, 王永娟, 赵远, 高光普, 袁庆军
Format Journal Article
LanguageChinese
Published Beijing Chinese Association for Cryptologic Research, Journal of Cryptologic Research 01.01.2021
Subjects
Online AccessGet full text
ISSN2097-4116
DOI10.13868/j.cnki.jcr.000467

Cover

Abstract 基于机器学习的功耗分析是目前功耗分析的主要研究方向之一, 属于建模类的攻击. 针对无掩码防护的AES算法实现, 本文将半监督机器学习算法 Tri-Training应用于功耗分析, 有效减少了用机器学习算法进行建模时所需要的有标记能量迹数量. 相较于基于有监督机器学习的建模类功耗分析, 使用Tri-Training算法可以有效减小对有标记能量迹的需求, 更具有现实意义. 然而, Tri-Training算法在初始分类器较弱时, 容易出现错误标记现象, 影响分类的准确率和建模的效率. 对此本文在使用Tri-Training算法进行建模时引入了阈值判断操作, 提高了分类的准确率, 并对比了不同阈值对分类准确率的影响. 本文对在ATM89S52单片机上实现的AES-128算法进行建模类功耗分析, 实验结果表明, 在使用80条有标记能量迹时, 相较于使用有监督学习算法的准确率为63.49%, 本方法的准确率为74.56%, 准确率提升了约11%.
AbstractList 基于机器学习的功耗分析是目前功耗分析的主要研究方向之一, 属于建模类的攻击. 针对无掩码防护的AES算法实现, 本文将半监督机器学习算法 Tri-Training应用于功耗分析, 有效减少了用机器学习算法进行建模时所需要的有标记能量迹数量. 相较于基于有监督机器学习的建模类功耗分析, 使用Tri-Training算法可以有效减小对有标记能量迹的需求, 更具有现实意义. 然而, Tri-Training算法在初始分类器较弱时, 容易出现错误标记现象, 影响分类的准确率和建模的效率. 对此本文在使用Tri-Training算法进行建模时引入了阈值判断操作, 提高了分类的准确率, 并对比了不同阈值对分类准确率的影响. 本文对在ATM89S52单片机上实现的AES-128算法进行建模类功耗分析, 实验结果表明, 在使用80条有标记能量迹时, 相较于使用有监督学习算法的准确率为63.49%, 本方法的准确率为74.56%, 准确率提升了约11%.
Author Yong-Juan, WANG
王相宾
高光普
Xiang-Bin, WANG
ZHAO, Yuan
赵远
Qing-Jun, YUAN
袁庆军
王永娟
GAO Guang-Pu
Author_xml – sequence: 1
  givenname: WANG
  surname: Xiang-Bin
  fullname: Xiang-Bin, WANG
– sequence: 2
  givenname: WANG
  surname: Yong-Juan
  fullname: Yong-Juan, WANG
– sequence: 3
  givenname: Yuan
  surname: ZHAO
  fullname: ZHAO, Yuan
– sequence: 4
  fullname: GAO Guang-Pu
– sequence: 5
  givenname: YUAN
  surname: Qing-Jun
  fullname: Qing-Jun, YUAN
– sequence: 6
  fullname: 王相宾
– sequence: 7
  fullname: 王永娟
– sequence: 8
  fullname: 赵远
– sequence: 9
  fullname: 高光普
– sequence: 10
  fullname: 袁庆军
BookMark eNotjT1Lw0Ach2-oYK39Aq7OF-_uf69jKfUFCg52L7nkDholqYndHUSkoOhQCopWENx0cbKfp2n8GAZ0-T3T8_y2UCPNUofQDiUBBS31XhJE6ekoSKI8IIRwqRqoyYhRmFMqN1G7KEaWCCFBM06bCJeL5Wp5V95Oq6eH6vmt_Hhffb9Wj1ed3kn1OV9_zcrp4udyXt5cr1_ut9GGD88K1_5nCw32e4PuIe4fHxx1O308FppiajUDw6RgKvLOQRgB5RKM5yI2sRXaCA-xkypUxDMvIbZEMeOVthGjQKCFdv-y4zw7n7jiYphkkzytH4eslimv18AvL1tTbA
ContentType Journal Article
Copyright 2021. This work is published under http://www.jcr.cacrnet.org.cn/EN/column/column4.shtml Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under http://www.jcr.cacrnet.org.cn/EN/column/column4.shtml Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID JQ2
DOI 10.13868/j.cnki.jcr.000467
DatabaseName ProQuest Computer Science Collection
DatabaseTitle ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
GroupedDBID -SI
-S~
ALMA_UNASSIGNED_HOLDINGS
CAJEI
JQ2
PB1
PB9
Q--
ID FETCH-LOGICAL-p581-1b823926527cfee3ac314639f45d9db5895f3de67a70f2f63db0729f78bc21303
ISSN 2097-4116
IngestDate Mon Jun 30 15:01:26 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p581-1b823926527cfee3ac314639f45d9db5895f3de67a70f2f63db0729f78bc21303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2895142899
PQPubID 6503834
ParticipantIDs proquest_journals_2895142899
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Journal of Cryptologic Research
PublicationYear 2021
Publisher Chinese Association for Cryptologic Research, Journal of Cryptologic Research
Publisher_xml – name: Chinese Association for Cryptologic Research, Journal of Cryptologic Research
SSID ssib055638241
ssib058688234
Score 2.250677
Snippet 基于机器学习的功耗分析是目前功耗分析的主要研究方向之一, 属于建模类的攻击. 针对无掩码防护的AES算法实现, 本文将半监督机器学习算法 Tri-Training应用于功耗分析, 有...
SourceID proquest
SourceType Aggregation Database
StartPage 660
SubjectTerms Accuracy
Algorithms
Classification
Machine learning
Power consumption
Semi-supervised learning
Title 基于半监督学习的AES算法功耗分析
URI https://www.proquest.com/docview/2895142899
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 2097-4116
  databaseCode: BENPR
  dateStart: 20140101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssib055638241
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtNAcBXSCxcEAsSjoB5YblvstdfePW5ap1FVkgpSEXGJ7LXNSwohxAd64oAQqgSCA6oEgiIhcYMLJ_on3JuGz2B27Twg5XlZjWbfnvHMaHd2BqELzFJ-mISCpJFIictjRSLqCwKyMgkZ2BfKBDC9XPdqG-5qi7VKpa9TXktZP1pUmwe-K_kfqgIO6Kpfyf4DZceDAgJgoC-UQGEo_4rGOGBYVHFF4sDVJQ80hi9jDhgfiwoWtgGWsXR0lQTAM40Flpapgl6uDK5qWAZY-DjwcMXBgpmhpB4_4MYfwjcYgD3dRkBj6xem7VLvQbefS9Wxa9-Isi3gxxukkocuuCbrKxO5A_jVLJypuF6TDaMpsgknr8iG5m7osZ5NH1xQ-6eDC50fPNHBVyZsaDwrD1pifpvw510YuUkt4RPXzp9wjoQ8n-Jld0pge3k2gxlF4nCPG02iOnduLd5WPRPWNc8c8mPU7nqjXd1YW2s3g1bzYvce0QnN9MV_kd3lEJqjoHCsMpqrBPX1KyNhpwOzcTqxRRlMyKnxghhvoHjkpddyaWYlM8aDsYiaR9GR4kstyJwvj6HS5s3jiAx2dvd2nw2ebg1fvxi-eT_4-GHvy7vhq0fAY8NP2_ufXw62dr493B48ebz_9vkJ1KwGzaUaKVJykC7jNrEjWKKgHqO-SpPECZUDmtYRqctiEUeMC5Y6ceL5oW-lNPWcONKR6VOfR4pqa-kkKnfudpJTaMFlwlMJD7mgkatYEilQPrGIwFxlyrXFaTQ_2l67-OXutylMoEMECnHm99Vn0eEJy82jcr-XJefAeuxH5ws6fAfUzm6W
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8D%8A%E7%9B%91%E7%9D%A3%E5%AD%A6%E4%B9%A0%E7%9A%84AES%E7%AE%97%E6%B3%95%E5%8A%9F%E8%80%97%E5%88%86%E6%9E%90&rft.jtitle=Journal+of+Cryptologic+Research&rft.au=Xiang-Bin%2C+WANG&rft.au=Yong-Juan%2C+WANG&rft.au=ZHAO%2C+Yuan&rft.au=GAO+Guang-Pu&rft.date=2021-01-01&rft.pub=Chinese+Association+for+Cryptologic+Research%2C+Journal+of+Cryptologic+Research&rft.issn=2097-4116&rft.volume=8&rft.issue=4&rft.spage=660&rft_id=info:doi/10.13868%2Fj.cnki.jcr.000467&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2097-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2097-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2097-4116&client=summon