Quantifying Health Outcome Disparity in Invasive Methicillin-Resistant Staphylococcus aureus Infection using Fairness Algorithms on Real-World Data
This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic health rec...
Saved in:
| Published in | Biocomputing 2024 Vol. 29; pp. 419 - 432 |
|---|---|
| Main Authors | , , , , , , |
| Format | Book Chapter Journal Article |
| Language | English |
| Published |
United States
WORLD SCIENTIFIC
01.01.2024
|
| Subjects | |
| Online Access | Get full text |
| ISBN | 9789811286421 9811286426 9811286434 9811286418 9789811286414 9789811286438 |
| ISSN | 2335-6936 |
| DOI | 10.1142/9789811286421_0032 |
Cover
| Abstract | This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic health record (EHR) data. We spatiotemporally linked 9 years of EHRs from a large healthcare provider in Florida, USA, with contextual social determinants of health (SDoH). We first created a causal structure graph connecting SDoH with individual clinical measurements before/upon diagnosis of invasive MRSA infection, treatments, side effects, and outcomes; then, we applied FACTS to quantify outcome potential disparities of different causal pathways including SDoH, clinical and demographic variables. We found moderate disparity with respect to demographics and SDoH, and all the top ranked pathways that led to outcome disparities in age, gender, race, and income, included comorbidity. Prior kidney impairment, vancomycin use, and timing were associated with racial disparity, while income, rurality, and available healthcare facilities contributed to gender disparity. From an intervention standpoint, our results highlight the necessity of devising policies that consider both clinical factors and SDoH. In conclusion, this work demonstrates a practical utility of fairness AI methods in public health settings. |
|---|---|
| AbstractList | This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic health record (EHR) data. We spatiotemporally linked 9 years of EHRs from a large healthcare provider in Florida, USA, with contextual social determinants of health (SDoH). We first created a causal structure graph connecting SDoH with individual clinical measurements before/upon diagnosis of invasive MRSA infection, treatments, side effects, and outcomes; then, we applied FACTS to quantify outcome potential disparities of different causal pathways including SDoH, clinical and demographic variables. We found moderate disparity with respect to demographics and SDoH, and all the top ranked pathways that led to outcome disparities in age, gender, race, and income, included comorbidity. Prior kidney impairment, vancomycin use, and timing were associated with racial disparity, while income, rurality, and available healthcare facilities contributed to gender disparity. From an intervention standpoint, our results highlight the necessity of devising policies that consider both clinical factors and SDoH. In conclusion, this work demonstrates a practical utility of fairness AI methods in public health settings. |
| Author | Ser, Sarah E. Cohen, Scott A. Xu, Jie Lucero, Robert J. Bian, Jiang Prosperi, Mattia Jun, Inyoung |
| Author_xml | – sequence: 1 givenname: Inyoung surname: Jun fullname: Jun, Inyoung – sequence: 2 givenname: Sarah E. surname: Ser fullname: Ser, Sarah E. – sequence: 3 givenname: Scott A. surname: Cohen fullname: Cohen, Scott A. – sequence: 4 givenname: Jie surname: Xu fullname: Xu, Jie – sequence: 5 givenname: Robert J. surname: Lucero fullname: Lucero, Robert J. – sequence: 6 givenname: Jiang surname: Bian fullname: Bian, Jiang – sequence: 7 givenname: Mattia surname: Prosperi fullname: Prosperi, Mattia email: m.prosperi@ufl.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38160296$$D View this record in MEDLINE/PubMed |
| BookMark | eNqdUctuFDEQNAREQtgf4ID8AxP8Ws_4wCFKSLJSUEQAcbQ8np5si1l7NPYk2u_gh-NVyCFE4sCppe6uqu6qt-RViAEIec_ZEedKfDR1YxrORaOV4JYxKV6QxZPmS3IgpFxW2ki999dsnyxSwpYtlVBGNuYN2ZcN10wYfUB-f51dyNhvMdzQC3BDXtOrOfu4AXqKaXQT5i3FQFfh1iW8BfoF8ho9DgOG6hoSplwI6LfsxvV2iD56Pyfq5glKWYUefMYY6Jx2AmcOpwAp0ePhJhbm9SbRMrwuutXPOA0dPXXZvSOvezckWPyph-TH2efvJxfV5dX56uT4shoVl32lzJJ56RRzwsi-Lt9y3oECpcFJKWTbdUq7uhfGuVppbyToRrC2Vka1oJbykHx44B3ndgOdHSfcuGlrH90pC_XDwt3utuQRdlaht22Mv5LlzO7isc_jKUj5L-RzhB27vqA-_Z-ebSeEXt4DnSSlug |
| ContentType | Book Chapter Journal Article |
| Copyright | The Authors |
| Copyright_xml | – notice: The Authors |
| DBID | NPM |
| DOI | 10.1142/9789811286421_0032 |
| DatabaseName | PubMed |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9789811286421 9811286426 9811286434 9789811286438 |
| EISSN | 2335-6936 |
| Editor | Altman, Russ B Hunter, Lawrence Ritchie, Marylyn D Murray, Tiffany Klein, Teri E |
| Editor_xml | – sequence: 1 givenname: Russ B surname: Altman fullname: Altman, Russ B organization: Stanford University – sequence: 2 givenname: Lawrence surname: Hunter fullname: Hunter, Lawrence organization: University of Colorado Health Sciences Center – sequence: 3 givenname: Marylyn D surname: Ritchie fullname: Ritchie, Marylyn D organization: University of Pennsylvania – sequence: 4 givenname: Tiffany surname: Murray fullname: Murray, Tiffany organization: Stanford University – sequence: 5 givenname: Teri E surname: Klein fullname: Klein, Teri E organization: Stanford University |
| EndPage | 432 |
| ExternalDocumentID | 38160296 10.1142/9789811286421_0032 |
| Genre | Journal Article |
| GroupedDBID | 9WS A7I AATMT ADCHV NPM |
| ID | FETCH-LOGICAL-p413f-4950c3a40a293f712811de4e46ea3323bdd46a7f29aa746c93e6820b7494be453 |
| ISBN | 9789811286421 9811286426 9811286434 9811286418 9789811286414 9789811286438 |
| IngestDate | Thu Apr 03 07:06:15 EDT 2025 Tue Nov 26 19:27:10 EST 2024 Sat Mar 15 08:51:04 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | AI fairness Methicillin-resistant Health outcome disparity |
| Language | English |
| LinkModel | OpenURL |
| MeetingName | Pacific Symposium on Biocomputing 2024 |
| MergedId | FETCHMERGED-LOGICAL-p413f-4950c3a40a293f712811de4e46ea3323bdd46a7f29aa746c93e6820b7494be453 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10795837 |
| PMID | 38160296 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_38160296 worldscientific_books_10_1142_9789811286421_0032 worldscientific_books_10_1142_9789811286421_0032_brief |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationSubtitle | Proceedings of the Pacific Symposium |
| PublicationTitle | Biocomputing 2024 |
| PublicationTitleAlternate | Pac Symp Biocomput |
| PublicationYear | 2024 |
| Publisher | WORLD SCIENTIFIC |
| Publisher_xml | – name: WORLD SCIENTIFIC |
| SSID | ssib054249389 ssib054406469 ssib015896917 |
| Score | 2.3671813 |
| Snippet | This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial... |
| SourceID | pubmed worldscientific |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 419 |
| SubjectTerms | OVERCOMING HEALTH DISPARITIES IN PRECISION MEDICINE |
| Title | Quantifying Health Outcome Disparity in Invasive Methicillin-Resistant Staphylococcus aureus Infection using Fairness Algorithms on Real-World Data |
| URI | https://www.worldscientific.com/doi/10.1142/9789811286421_0032 https://www.ncbi.nlm.nih.gov/pubmed/38160296 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtowELbYlSqtKlWt-kf_5ENvabaJM3HIkbKLllXZUBZUekJO4myR2oAgqdS-Rh-nL9dxDCEBVIleAk6wSTxfxuPxfGNC3roCBBehNB1Hggle6JhCWIlpC9TIqP1wJqQIzv0bfjWG64k7aTT-VKKW8iw8j34d5JX8j1TxHMpVsWSPkGzZKJ7A7yhfPKKE8bhj_NbdrDrpRbvT62If3n7pD4Lb3rhvBDfGh17QCfqD8Ug5oZjFSmrLda4pXulP9XqXfpX1tlvKLWxcnpcLEhvORrHdvdEuL0zyQuqzGtI-5UJFHBV8qTWrKcgzfF6pcnuqXQ6zglzYS3-IIli-L1WQvXL0pOZQrpQFm2bK7EWR49g6j6J8ZYh8KfGjtw4WS4288Gp0xWxZaOf2t7s5tvz1e7HeMcT_NXVg0IVm25W-DAY7vozPwfDjhfaujVQP1ua6fgtNwxYHGyr6Ftb6Vg_doF2l-6MCMB0IsmmD2SonKtuOgZt1_52hsQxY_FcrJ-TEaykV2_bKmbcLOK11ton8XUDDCbivUz5tH6VeZna97LTukbPyx9UC45WCAxs2GLD3-_dXsa0eFGl4NdVWRaJVTKnRQ3Jf0Wuo4r3goz8iDZk-Jr8rGKIaQ3SNIVpiiM5SusEQPYghWscQ1RiiJYZogSG6wRDdYojixS2GqMLQEzLuXo46V-Z6uxBzgZZYYuJU34ocAZZAEzbx1BKxHUuQwKVwHOaEcQxceAnzhfCAR74jOdq_oQc-hBJc5yk5TeepfE6oKzxpRTYqqzABjqKMleM9jKUvhS1CaJJnukunC50TZqrW3y3m8yaxdvp4qjTEaqoTALDpvnyahB9bZRouZzJpkneHKx6osIiTF8ff2ktytn1NX5HTbJnL12iEZ-GbAu54vBn0_wIzZskU |
| linkProvider | Open Access Publishing in European Networks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=PACIFIC+SYMPOSIUM+ON+BIOCOMPUTING+2024&rft.au=Jun%2C+Inyoung&rft.au=Ser%2C+Sarah+E.&rft.au=Cohen%2C+Scott+A.&rft.au=Xu%2C+Jie&rft.atitle=Quantifying+Health+Outcome+Disparity+in+Invasive+Methicillin-Resistant+Staphylococcus+aureus+Infection+using+Fairness+Algorithms+on+Real-World+Data&rft.date=2024-01-01&rft.pub=WORLD+SCIENTIFIC&rft.isbn=9789811286414&rft.spage=419&rft.epage=432&rft_id=info:doi/10.1142%2F9789811286421_0032&rft.externalDBID=n%2Fa&rft.externalDocID=10.1142%2F9789811286421_0032 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F9789811286421_0032 |