Quantifying Health Outcome Disparity in Invasive Methicillin-Resistant Staphylococcus aureus Infection using Fairness Algorithms on Real-World Data

This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic health rec...

Full description

Saved in:
Bibliographic Details
Published inBiocomputing 2024 Vol. 29; pp. 419 - 432
Main Authors Jun, Inyoung, Ser, Sarah E., Cohen, Scott A., Xu, Jie, Lucero, Robert J., Bian, Jiang, Prosperi, Mattia
Format Book Chapter Journal Article
LanguageEnglish
Published United States WORLD SCIENTIFIC 01.01.2024
Subjects
Online AccessGet full text
ISBN9789811286421
9811286426
9811286434
9811286418
9789811286414
9789811286438
ISSN2335-6936
DOI10.1142/9789811286421_0032

Cover

Abstract This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic health record (EHR) data. We spatiotemporally linked 9 years of EHRs from a large healthcare provider in Florida, USA, with contextual social determinants of health (SDoH). We first created a causal structure graph connecting SDoH with individual clinical measurements before/upon diagnosis of invasive MRSA infection, treatments, side effects, and outcomes; then, we applied FACTS to quantify outcome potential disparities of different causal pathways including SDoH, clinical and demographic variables. We found moderate disparity with respect to demographics and SDoH, and all the top ranked pathways that led to outcome disparities in age, gender, race, and income, included comorbidity. Prior kidney impairment, vancomycin use, and timing were associated with racial disparity, while income, rurality, and available healthcare facilities contributed to gender disparity. From an intervention standpoint, our results highlight the necessity of devising policies that consider both clinical factors and SDoH. In conclusion, this work demonstrates a practical utility of fairness AI methods in public health settings.
AbstractList This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial intelligence (AI) fairness algorithm, the Fairness-Aware Causal paThs (FACTS) decomposition, and applying it to real-world electronic health record (EHR) data. We spatiotemporally linked 9 years of EHRs from a large healthcare provider in Florida, USA, with contextual social determinants of health (SDoH). We first created a causal structure graph connecting SDoH with individual clinical measurements before/upon diagnosis of invasive MRSA infection, treatments, side effects, and outcomes; then, we applied FACTS to quantify outcome potential disparities of different causal pathways including SDoH, clinical and demographic variables. We found moderate disparity with respect to demographics and SDoH, and all the top ranked pathways that led to outcome disparities in age, gender, race, and income, included comorbidity. Prior kidney impairment, vancomycin use, and timing were associated with racial disparity, while income, rurality, and available healthcare facilities contributed to gender disparity. From an intervention standpoint, our results highlight the necessity of devising policies that consider both clinical factors and SDoH. In conclusion, this work demonstrates a practical utility of fairness AI methods in public health settings.
Author Ser, Sarah E.
Cohen, Scott A.
Xu, Jie
Lucero, Robert J.
Bian, Jiang
Prosperi, Mattia
Jun, Inyoung
Author_xml – sequence: 1
  givenname: Inyoung
  surname: Jun
  fullname: Jun, Inyoung
– sequence: 2
  givenname: Sarah E.
  surname: Ser
  fullname: Ser, Sarah E.
– sequence: 3
  givenname: Scott A.
  surname: Cohen
  fullname: Cohen, Scott A.
– sequence: 4
  givenname: Jie
  surname: Xu
  fullname: Xu, Jie
– sequence: 5
  givenname: Robert J.
  surname: Lucero
  fullname: Lucero, Robert J.
– sequence: 6
  givenname: Jiang
  surname: Bian
  fullname: Bian, Jiang
– sequence: 7
  givenname: Mattia
  surname: Prosperi
  fullname: Prosperi, Mattia
  email: m.prosperi@ufl.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38160296$$D View this record in MEDLINE/PubMed
BookMark eNqdUctuFDEQNAREQtgf4ID8AxP8Ws_4wCFKSLJSUEQAcbQ8np5si1l7NPYk2u_gh-NVyCFE4sCppe6uqu6qt-RViAEIec_ZEedKfDR1YxrORaOV4JYxKV6QxZPmS3IgpFxW2ki999dsnyxSwpYtlVBGNuYN2ZcN10wYfUB-f51dyNhvMdzQC3BDXtOrOfu4AXqKaXQT5i3FQFfh1iW8BfoF8ho9DgOG6hoSplwI6LfsxvV2iD56Pyfq5glKWYUefMYY6Jx2AmcOpwAp0ePhJhbm9SbRMrwuutXPOA0dPXXZvSOvezckWPyph-TH2efvJxfV5dX56uT4shoVl32lzJJ56RRzwsi-Lt9y3oECpcFJKWTbdUq7uhfGuVppbyToRrC2Vka1oJbykHx44B3ndgOdHSfcuGlrH90pC_XDwt3utuQRdlaht22Mv5LlzO7isc_jKUj5L-RzhB27vqA-_Z-ebSeEXt4DnSSlug
ContentType Book Chapter
Journal Article
Copyright The Authors
Copyright_xml – notice: The Authors
DBID NPM
DOI 10.1142/9789811286421_0032
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISBN 9789811286421
9811286426
9811286434
9789811286438
EISSN 2335-6936
Editor Altman, Russ B
Hunter, Lawrence
Ritchie, Marylyn D
Murray, Tiffany
Klein, Teri E
Editor_xml – sequence: 1
  givenname: Russ B
  surname: Altman
  fullname: Altman, Russ B
  organization: Stanford University
– sequence: 2
  givenname: Lawrence
  surname: Hunter
  fullname: Hunter, Lawrence
  organization: University of Colorado Health Sciences Center
– sequence: 3
  givenname: Marylyn D
  surname: Ritchie
  fullname: Ritchie, Marylyn D
  organization: University of Pennsylvania
– sequence: 4
  givenname: Tiffany
  surname: Murray
  fullname: Murray, Tiffany
  organization: Stanford University
– sequence: 5
  givenname: Teri E
  surname: Klein
  fullname: Klein, Teri E
  organization: Stanford University
EndPage 432
ExternalDocumentID 38160296
10.1142/9789811286421_0032
Genre Journal Article
GroupedDBID 9WS
A7I
AATMT
ADCHV
NPM
ID FETCH-LOGICAL-p413f-4950c3a40a293f712811de4e46ea3323bdd46a7f29aa746c93e6820b7494be453
ISBN 9789811286421
9811286426
9811286434
9811286418
9789811286414
9789811286438
IngestDate Thu Apr 03 07:06:15 EDT 2025
Tue Nov 26 19:27:10 EST 2024
Sat Mar 15 08:51:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords AI fairness
Methicillin-resistant
Health outcome disparity
Language English
LinkModel OpenURL
MeetingName Pacific Symposium on Biocomputing 2024
MergedId FETCHMERGED-LOGICAL-p413f-4950c3a40a293f712811de4e46ea3323bdd46a7f29aa746c93e6820b7494be453
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10795837
PMID 38160296
PageCount 14
ParticipantIDs pubmed_primary_38160296
worldscientific_books_10_1142_9789811286421_0032
worldscientific_books_10_1142_9789811286421_0032_brief
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationSubtitle Proceedings of the Pacific Symposium
PublicationTitle Biocomputing 2024
PublicationTitleAlternate Pac Symp Biocomput
PublicationYear 2024
Publisher WORLD SCIENTIFIC
Publisher_xml – name: WORLD SCIENTIFIC
SSID ssib054249389
ssib054406469
ssib015896917
Score 2.3671813
Snippet This study quantifies health outcome disparities in invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infections by leveraging a novel artificial...
SourceID pubmed
worldscientific
SourceType Index Database
Enrichment Source
Publisher
StartPage 419
SubjectTerms OVERCOMING HEALTH DISPARITIES IN PRECISION MEDICINE
Title Quantifying Health Outcome Disparity in Invasive Methicillin-Resistant Staphylococcus aureus Infection using Fairness Algorithms on Real-World Data
URI https://www.worldscientific.com/doi/10.1142/9789811286421_0032
https://www.ncbi.nlm.nih.gov/pubmed/38160296
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtowELbYlSqtKlWt-kf_5ENvabaJM3HIkbKLllXZUBZUekJO4myR2oAgqdS-Rh-nL9dxDCEBVIleAk6wSTxfxuPxfGNC3roCBBehNB1Hggle6JhCWIlpC9TIqP1wJqQIzv0bfjWG64k7aTT-VKKW8iw8j34d5JX8j1TxHMpVsWSPkGzZKJ7A7yhfPKKE8bhj_NbdrDrpRbvT62If3n7pD4Lb3rhvBDfGh17QCfqD8Ug5oZjFSmrLda4pXulP9XqXfpX1tlvKLWxcnpcLEhvORrHdvdEuL0zyQuqzGtI-5UJFHBV8qTWrKcgzfF6pcnuqXQ6zglzYS3-IIli-L1WQvXL0pOZQrpQFm2bK7EWR49g6j6J8ZYh8KfGjtw4WS4288Gp0xWxZaOf2t7s5tvz1e7HeMcT_NXVg0IVm25W-DAY7vozPwfDjhfaujVQP1ua6fgtNwxYHGyr6Ftb6Vg_doF2l-6MCMB0IsmmD2SonKtuOgZt1_52hsQxY_FcrJ-TEaykV2_bKmbcLOK11ton8XUDDCbivUz5tH6VeZna97LTukbPyx9UC45WCAxs2GLD3-_dXsa0eFGl4NdVWRaJVTKnRQ3Jf0Wuo4r3goz8iDZk-Jr8rGKIaQ3SNIVpiiM5SusEQPYghWscQ1RiiJYZogSG6wRDdYojixS2GqMLQEzLuXo46V-Z6uxBzgZZYYuJU34ocAZZAEzbx1BKxHUuQwKVwHOaEcQxceAnzhfCAR74jOdq_oQc-hBJc5yk5TeepfE6oKzxpRTYqqzABjqKMleM9jKUvhS1CaJJnukunC50TZqrW3y3m8yaxdvp4qjTEaqoTALDpvnyahB9bZRouZzJpkneHKx6osIiTF8ff2ktytn1NX5HTbJnL12iEZ-GbAu54vBn0_wIzZskU
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=PACIFIC+SYMPOSIUM+ON+BIOCOMPUTING+2024&rft.au=Jun%2C+Inyoung&rft.au=Ser%2C+Sarah+E.&rft.au=Cohen%2C+Scott+A.&rft.au=Xu%2C+Jie&rft.atitle=Quantifying+Health+Outcome+Disparity+in+Invasive+Methicillin-Resistant+Staphylococcus+aureus+Infection+using+Fairness+Algorithms+on+Real-World+Data&rft.date=2024-01-01&rft.pub=WORLD+SCIENTIFIC&rft.isbn=9789811286414&rft.spage=419&rft.epage=432&rft_id=info:doi/10.1142%2F9789811286421_0032&rft.externalDBID=n%2Fa&rft.externalDocID=10.1142%2F9789811286421_0032
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F9789811286421_0032