Prediction of Type II Diabetes Onset with Computed Tomography and Electronic Medical Records

Type II diabetes mellitus (T2DM) is a significant public health concern with multiple known risk factors (e.g., body mass index (BMI), body fat distribution, glucose levels). Improved prediction or prognosis would enable earlier intervention before possibly irreversible damage has occurred. Meanwhil...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science Vol. 12445; pp. 13 - 23
Main Authors Tang, Yucheng, Gao, Riqiang, Lee, Ho Hin, Wells, Quinn Stanton, Spann, Ashley, Terry, James G., Carr, John J., Huo, Yuankai, Bao, Shunxing, Landman, Bennett A.
Format Book Chapter Journal Article
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030609450
3030609456
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-030-60946-7_2

Cover

Abstract Type II diabetes mellitus (T2DM) is a significant public health concern with multiple known risk factors (e.g., body mass index (BMI), body fat distribution, glucose levels). Improved prediction or prognosis would enable earlier intervention before possibly irreversible damage has occurred. Meanwhile, abdominal computed tomography (CT) is a relatively common imaging technique. Herein, we explore secondary use of the CT imaging data to refine the risk profile of future diagnosis of T2DM. In this work, we delineate quantitative information and imaging slices of patient history to predict onset T2DM retrieved from ICD-9 codes at least one year in the future. Furthermore, we investigate the role of five different types of electronic medical records (EMR), specifically 1) demographics; 2) pancreas volume; 3) visceral/subcutaneous fat volumes in L2 region of interest; 4) abdominal body fat distribution and 5) glucose lab tests in prediction. Next, we build a deep neural network to predict onset T2DM with pancreas imaging slices. Finally, motivated by multi-modal machine learning, we construct a merged framework to combine CT imaging slices with EMR information to refine the prediction. We empirically demonstrate our proposed joint analysis involving images and EMR leads to 4.25% and 6.93% AUC increase in predicting T2DM compared with only using images or EMR. In this study, we used case-control dataset of 997 subjects with CT scans and contextual EMR scores. To the best of our knowledge, this is the first work to show the ability to prognose T2DM using the patients’ contextual and imaging history. We believe this study has promising potential for heterogeneous data analysis and multi-modal medical applications.
AbstractList Type II diabetes mellitus (T2DM) is a significant public health concern with multiple known risk factors ( , body mass index (BMI), body fat distribution, glucose levels). Improved prediction or prognosis would enable earlier intervention before possibly irreversible damage has occurred. Meanwhile, abdominal computed tomography (CT) is a relatively common imaging technique. Herein, we explore secondary use of the CT imaging data to refine the risk profile of future diagnosis of T2DM. In this work, we delineate quantitative information and imaging slices of patient history to predict onset T2DM retrieved from ICD-9 codes at least one year in the future. Furthermore, we investigate the role of five different types of electronic medical records (EMR), specifically 1) demographics; 2) pancreas volume; 3) visceral/subcutaneous fat volumes in L2 region of interest; 4) abdominal body fat distribution and 5) glucose lab tests in prediction. Next, we build a deep neural network to predict onset T2DM with pancreas imaging slices. Finally, motivated by multi-modal machine learning, we construct a merged framework to combine CT imaging slices with EMR information to refine the prediction. We empirically demonstrate our proposed joint analysis involving images and EMR leads to 4.25% and 6.93% AUC increase in predicting T2DM compared with only using images or EMR. In this study, we used case-control dataset of 997 subjects with CT scans and contextual EMR scores. To the best of our knowledge, this is the first work to show the ability to prognose T2DM using the patients' contextual and imaging history. We believe this study has promising potential for heterogeneous data analysis and multi-modal medical applications.
Type II diabetes mellitus (T2DM) is a significant public health concern with multiple known risk factors (e.g., body mass index (BMI), body fat distribution, glucose levels). Improved prediction or prognosis would enable earlier intervention before possibly irreversible damage has occurred. Meanwhile, abdominal computed tomography (CT) is a relatively common imaging technique. Herein, we explore secondary use of the CT imaging data to refine the risk profile of future diagnosis of T2DM. In this work, we delineate quantitative information and imaging slices of patient history to predict onset T2DM retrieved from ICD-9 codes at least one year in the future. Furthermore, we investigate the role of five different types of electronic medical records (EMR), specifically 1) demographics; 2) pancreas volume; 3) visceral/subcutaneous fat volumes in L2 region of interest; 4) abdominal body fat distribution and 5) glucose lab tests in prediction. Next, we build a deep neural network to predict onset T2DM with pancreas imaging slices. Finally, motivated by multi-modal machine learning, we construct a merged framework to combine CT imaging slices with EMR information to refine the prediction. We empirically demonstrate our proposed joint analysis involving images and EMR leads to 4.25% and 6.93% AUC increase in predicting T2DM compared with only using images or EMR. In this study, we used case-control dataset of 997 subjects with CT scans and contextual EMR scores. To the best of our knowledge, this is the first work to show the ability to prognose T2DM using the patients’ contextual and imaging history. We believe this study has promising potential for heterogeneous data analysis and multi-modal medical applications.
Author Gao, Riqiang
Wells, Quinn Stanton
Carr, John J.
Lee, Ho Hin
Bao, Shunxing
Landman, Bennett A.
Huo, Yuankai
Tang, Yucheng
Terry, James G.
Spann, Ashley
Author_xml – sequence: 1
  givenname: Yucheng
  surname: Tang
  fullname: Tang, Yucheng
  email: yucheng.tang@vanderbilt.edu
– sequence: 2
  givenname: Riqiang
  surname: Gao
  fullname: Gao, Riqiang
– sequence: 3
  givenname: Ho Hin
  surname: Lee
  fullname: Lee, Ho Hin
– sequence: 4
  givenname: Quinn Stanton
  surname: Wells
  fullname: Wells, Quinn Stanton
– sequence: 5
  givenname: Ashley
  surname: Spann
  fullname: Spann, Ashley
– sequence: 6
  givenname: James G.
  surname: Terry
  fullname: Terry, James G.
– sequence: 7
  givenname: John J.
  surname: Carr
  fullname: Carr, John J.
– sequence: 8
  givenname: Yuankai
  surname: Huo
  fullname: Huo, Yuankai
– sequence: 9
  givenname: Shunxing
  surname: Bao
  fullname: Bao, Shunxing
– sequence: 10
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34113927$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1uEzEURg0U2rTkCZCQX8DF_x4vUWhLpKIiFNaWZ-w0AxN7sB1VeZs8S56sTlMqsWLl6-_e8y3OOTgJMXgAPhB8STBWn7RqEEOYYSSx5hIpQ1-BaU1ZzZ4i9RpMiCQEMcb1m392Ap-ASZ0p0oqzd-CcUEwrQSg9A9Ocf2Fc_zUh_BScMU4I01RNgPmevOu70scA43K_W2xHD-dz-KW3rS8-w7uQfYEPfVntd7O4HjfFO7iI63if7LjaQhvcfnc1-K6kGPoOfjvU2QH-8F1MLr8Hb5d2yH76_F6An9dXi9lXdHt3M599vkUj07IgLRrfUkW9kILJhnXaNVwR3bJGECo7LIRcYmcxblqHhV1a6tpWaasbTCnm7ALwY-8mjHb7YIfBjKlf27Q1BJuDX1NtGWaqI_Mk01S_Fft4xMZNu_buhfkrqB6Q40Guq3Dvk2lj_J3_U0qfS1P8s_G5GH-AOh9KskO3smPxKRvJJCOEGyIM5ewRJVSSwQ
ContentType Book Chapter
Journal Article
Copyright Springer Nature Switzerland AG 2020
Copyright_xml – notice: Springer Nature Switzerland AG 2020
DBID FFUUA
NPM
ABOKW
UNPAY
DEWEY 616.07540285
DOI 10.1007/978-3-030-60946-7_2
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
PubMed
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISBN 9783030609467
3030609464
EISSN 1611-3349
Editor Madabhushi, Anant
Drechsler, Klaus
Oyarzun Laura, Cristina
Greenspan, Hayit
Wesarg, Stefan
Syeda-Mahmood, Tanveer
Karargyris, Alexandros
Shekhar, Raj
González Ballester, Miguel Ángel
Linguraru, Marius George
Editor_xml – sequence: 1
  fullname: Madabhushi, Anant
– sequence: 2
  fullname: Drechsler, Klaus
– sequence: 3
  fullname: Oyarzun Laura, Cristina
– sequence: 4
  fullname: Greenspan, Hayit
– sequence: 5
  fullname: Wesarg, Stefan
– sequence: 6
  fullname: Syeda-Mahmood, Tanveer
– sequence: 7
  fullname: Karargyris, Alexandros
– sequence: 8
  fullname: Shekhar, Raj
– sequence: 9
  fullname: González Ballester, Miguel Ángel
– sequence: 10
  fullname: Linguraru, Marius George
EndPage 23
ExternalDocumentID oai:pubmedcentral.nih.gov:8188902
34113927
EBC6363114_15_24
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR000445
– fundername: NIBIB NIH HHS
  grantid: R01 EB017230
GroupedDBID 38.
AABBV
ACGCR
AEDXK
AEHEY
AEJLV
AEJNW
AEKFX
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
CZZ
DACMV
ESBCR
FFUUA
I4C
IEZ
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
NPM
ABOKW
UNPAY
ID FETCH-LOGICAL-p396t-958eb272e5653683c9d84719b385126c0556f0da008bd05afa2dbb79a98022043
IEDL.DBID UNPAY
ISBN 9783030609450
3030609456
ISSN 0302-9743
1611-3349
IngestDate Sun Oct 26 04:16:04 EDT 2025
Thu Jan 02 22:33:52 EST 2025
Wed Sep 17 04:53:10 EDT 2025
Wed Oct 15 11:13:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Type II diabetes
Disease onset prediction
Computed tomography
Metabolic syndrome
Electronic medical records
LCCallNum Q334-342
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p396t-958eb272e5653683c9d84719b385126c0556f0da008bd05afa2dbb79a98022043
OCLC 1202467122
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8188902
PMID 34113927
PQID EBC6363114_15_24
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_978_3_030_60946_7_2
pubmed_primary_34113927
springer_books_10_1007_978_3_030_60946_7_2
proquest_ebookcentralchapters_6363114_15_24
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 10th International Workshop, ML-CDS 2020, and 9th International Workshop, CLIP 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings
PublicationTitle Lecture notes in computer science
PublicationTitleAlternate Multimodal Learn Clin Decis Support Clin Image Based Proc (2020)
PublicationYear 2020
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002424614
ssj0002792
Score 2.0447686
Snippet Type II diabetes mellitus (T2DM) is a significant public health concern with multiple known risk factors (e.g., body mass index (BMI), body fat distribution,...
Type II diabetes mellitus (T2DM) is a significant public health concern with multiple known risk factors ( , body mass index (BMI), body fat distribution,...
SourceID unpaywall
pubmed
springer
proquest
SourceType Open Access Repository
Index Database
Publisher
StartPage 13
SubjectTerms Computed tomography
Disease onset prediction
Electronic medical records
Metabolic syndrome
Type II diabetes
Title Prediction of Type II Diabetes Onset with Computed Tomography and Electronic Medical Records
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6363114&ppg=24&c=UERG
http://link.springer.com/10.1007/978-3-030-60946-7_2
https://www.ncbi.nlm.nih.gov/pubmed/34113927
https://www.ncbi.nlm.nih.gov/pmc/articles/8188902
UnpaywallVersion submittedVersion
Volume 12445
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD60ycMuD92tW3YJetjThtJYsuXosYyUtqxZGM3oYCB0MytLnFA7jO3X78iWQxlj0FcjC1vn2Od8Ot_5BPCWezHhiUuoFIWjqc0E1SwPjcCcaTHx3ptQ0b2YidNFen6VXe1B0vXCNKR9a65H5XI1Kq-_N9zKzcoedTyxI4wwoTa2D32RYfrdg_5iNj_-2lYLGJWRVC-CPB9P5U5pqBWT5RRHUYGgRtBcsX_llbdqog_g3rbc6F8_9XJ5K-ycHMDn7oFbtsmP0bY2I_v7Ly3HO73RI3gY-htIaDzANX0Me758Agfd6Q4kfuxP4dv8JhRxguHIuiABsJKzMxIpNBX5VFa-JmEfl8SbHblcr6IENtGlI9PdGTskFoRIC3erZ7A4mV5-OKXxLAa64VLUVGYTxOA585gAcjSvlS7ENWk4pmxM2KDJU4ydxpTCuHGmC82cMbnUsunlTfkh9Mp16V8AmTiT8EJbp_E6_jB1xgpvEImOhbOptQN439lENRXjSFO17bpUSnDBEcapJFMsHcDz1mxq08pzKIzLmNayfADvOjuqME2lOolmdATFFTqCahxBoSMMgO4svZvpP-Nf3nH8K7jPAlJvNm9eQ6--2fo3mM7UZgj94-n5xy9D2J_NL4bRnf8ArCrwww
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7S9GHtHrqt3Zr9Qg97WlEaS7YcPY7R0g6WlZFACgWhX2ZliRNqh7H99TvZcihlDPpqZGHrzr77dN99AvjAvRjzxCVUisLR1GaCapaHRmDOtBh7702o6H6diItZ-mWezXuQdL0wDWnfmtthuVgOy9sfDbdyvbSnHU_sFCNMqI3twK7IMP3uw-5scvXpuq0WMCojqV4EeT6eyq3SUCsmyymOogJBjaC5Yv_KK-_VRPfhyaZc69-_9GJxL-ycH8D37oFbtsnP4aY2Q_vngZbjo97oGTwN_Q0kNB7gmj6Hni9fwEF3ugOJH_sh3FzdhSJOMBxZFSQAVnJ5SSKFpiLfysrXJOzjknizI9PVMkpgE106crY9Y4fEghBp4W51BLPzs-nnCxrPYqBrLkVNZTZGDJ4zjwkgR_Na6UJck4ZjysaEDZo8xchpTCmMG2W60MwZk0stm17elL-Efrkq_TGQsTMJL7R1Gq_jD1NnrPAGkehIOJtaO4CTziaqqRhHmqpt16VSgguOME4lmWLpAF61ZlPrVp5DYVzGtJblA_jY2VGFaSrVSTSjIyiu0BFU4wgKHWEAdGvp7Uz_Gf_6kePfwB4LSL3ZvHkL_fpu499hOlOb99GB_wKW2-4i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Multimodal+Learning+for+Clinical+Decision+Support+and+Clinical+Image-Based+Procedures&rft.au=Tang%2C+Yucheng&rft.au=Gao%2C+Riqiang&rft.au=Lee%2C+Ho+Hin&rft.au=Wells%2C+Quinn+Stanton&rft.atitle=Prediction+of+Type+II+Diabetes+Onset+with+Computed+Tomography+and+Electronic+Medical+Records&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2020-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030609450&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=13&rft.epage=23&rft_id=info:doi/10.1007%2F978-3-030-60946-7_2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6363114-l.jpg