Modeling the viral load dependence of residence times of virus‐laden droplets from COVID‐19‐infected subjects in indoor environments

In the ongoing COVID‐19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus‐laden drople...

Full description

Saved in:
Bibliographic Details
Published inIndoor air Vol. 31; no. 6; pp. 1786 - 1797
Main Authors Srinivasan, Anand, Krishan, Jayant, Bathula, Sreekanth, Mayya, Yelia S.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.11.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0905-6947
1600-0668
1600-0668
DOI10.1111/ina.12868

Cover

Abstract In the ongoing COVID‐19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus‐laden droplets (termed as “virusol”) (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive “Falling‐to‐Mixing‐Plate‐out” model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1‐D and 3‐D problems for non‐evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104/ml) to about 1100–1250 s at high viral loads (>1011/ml). The implications are discussed.
AbstractList In the ongoing COVID-19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus-laden droplets (termed as "virusol") (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive "Falling-to-Mixing-Plate-out" model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1-D and 3-D problems for non-evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<10 /ml) to about 1100-1250 s at high viral loads (>10 /ml). The implications are discussed.
In the ongoing COVID‐19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus‐laden droplets (termed as “virusol”) (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive “Falling‐to‐Mixing‐Plate‐out” model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1‐D and 3‐D problems for non‐evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104/ml) to about 1100–1250 s at high viral loads (>1011/ml). The implications are discussed.
In the ongoing COVID‐19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus‐laden droplets (termed as “virusol”) (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive “Falling‐to‐Mixing‐Plate‐out” model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1‐D and 3‐D problems for non‐evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104/ml) to about 1100–1250 s at high viral loads (>1011/ml). The implications are discussed.
In the ongoing COVID‐19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus‐laden droplets (termed as “virusol”) (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive “Falling‐to‐Mixing‐Plate‐out” model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1‐D and 3‐D problems for non‐evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<10 4 /ml) to about 1100–1250 s at high viral loads (>10 11 /ml). The implications are discussed.
In the ongoing COVID-19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus-laden droplets (termed as "virusol") (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive "Falling-to-Mixing-Plate-out" model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1-D and 3-D problems for non-evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104 /ml) to about 1100-1250 s at high viral loads (>1011 /ml). The implications are discussed.In the ongoing COVID-19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study pointed out that Poissonian fluctuations in viral loading of airborne droplets significantly modifies the size spectrum of the virus-laden droplets (termed as "virusol") (Anand and Mayya, 2020). Herein we develop the theory of residence time of the virusols, as contrasted with complete droplet system in indoor air using a comprehensive "Falling-to-Mixing-Plate-out" model that considers all the important processes namely, indoor dispersion of the emitted puff, droplet evaporation, gravitational settling, and plate out mechanisms at indoor surfaces. This model fills the existing gap between Wells falling drop model (Wells, 1934) and the stirred chamber models (Lai and Nazarofff, 2000). The analytical solutions are obtained for both 1-D and 3-D problems for non-evaporating falling droplets, used mainly for benchmarking the numerical formulation. The effect of various parameters is examined in detail. Significantly, the mean residence time of virusols is found to increase nonlinearly with the viral load in the ejecta, ranging from about 100 to 150 s at low viral loads (<104 /ml) to about 1100-1250 s at high viral loads (>1011 /ml). The implications are discussed.
Author Krishan, Jayant
Bathula, Sreekanth
Srinivasan, Anand
Mayya, Yelia S.
AuthorAffiliation 1 Health Physics Division Bhabha Atomic Research Centre Mumbai India
2 Homi Bhabha National Institute Bhabha Atomic Research Centre Mumbai India
3 Radiation Safety and Systems Division Bhabha Atomic Research Centre Mumbai India
4 Department of Chemical Engineering Indian Institute of Technology Bombay Mumbai India
AuthorAffiliation_xml – name: 2 Homi Bhabha National Institute Bhabha Atomic Research Centre Mumbai India
– name: 3 Radiation Safety and Systems Division Bhabha Atomic Research Centre Mumbai India
– name: 4 Department of Chemical Engineering Indian Institute of Technology Bombay Mumbai India
– name: 1 Health Physics Division Bhabha Atomic Research Centre Mumbai India
Author_xml – sequence: 1
  givenname: Anand
  orcidid: 0000-0003-2003-9634
  surname: Srinivasan
  fullname: Srinivasan, Anand
  email: sanand@barc.gov.in
  organization: Bhabha Atomic Research Centre
– sequence: 2
  givenname: Jayant
  surname: Krishan
  fullname: Krishan, Jayant
  organization: Bhabha Atomic Research Centre
– sequence: 3
  givenname: Sreekanth
  surname: Bathula
  fullname: Bathula, Sreekanth
  organization: Bhabha Atomic Research Centre
– sequence: 4
  givenname: Yelia S.
  surname: Mayya
  fullname: Mayya, Yelia S.
  email: ysmayya@iitb.ac.in, ysmayya@gmail.com
  organization: Indian Institute of Technology Bombay
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34118165$$D View this record in MEDLINE/PubMed
BookMark eNpdkcFu1DAQhi1URLeFAy-ALHHhktZOHDu-IFVbCisVegGulhNPWq8SO9hJUW-ce-IZeRKm3VIBljUez_9p7NF_QPZCDEDIS86OOK5jH-wRLxvZPCErLhkrmJTNHlkxzepCaqH2yUHOW8a4qnT1jOxXgvOGy3pFbj9GB4MPl3S-Anrtkx3oEK2jDiYIDkIHNPY0Qfa7y-xHyHclZJf868fPwaJAXYrTAHOmfYojXV983ZyixjUGH3roZnA0L-0Ws0x9wO1iTBQCtolhhDDn5-Rpb4cMLx7OQ_Ll7N3n9Yfi_OL9Zn1yXkyVLJvCyVZa3XRO9FapXljXOdmDVlithXI1azocv215bzUTnS4r5VpdI9MyjNUhebvrOy3tCK7Dt3FqMyU_2nRjovXmXyX4K3MZr00jhBIlwwZvHhqk-G2BPJvR5w6GwQaISzZlLViNfiiN6Ov_0G1cUsDxkGpKVTFZVki9-vtHj1_5YxMCxzvgux_g5lHnzNz5b9B_c--_2Xw6uU-q3wd2qhg
ContentType Journal Article
Copyright 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons A/S
Copyright_xml – notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons A/S
DBID CGR
CUY
CVF
ECM
EIF
NPM
7ST
8FD
C1K
FR3
KR7
SOI
7X8
5PM
DOI 10.1111/ina.12868
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Civil Engineering Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate ANAND et al
EISSN 1600-0668
EndPage 1797
ExternalDocumentID PMC8447420
34118165
INA12868
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
36B
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8C1
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAKAS
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATCPS
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PATMY
PIMPY
PQQKQ
PYCSY
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WIH
WIJ
WIK
WLBEL
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
7ST
8FD
C1K
FR3
KR7
SOI
7X8
5PM
ID FETCH-LOGICAL-p3628-d6b6a98cd4fa77f4adcd6fe976a9547d508c668bb1fa904c9237db956feb056f3
IEDL.DBID DR2
ISSN 0905-6947
1600-0668
IngestDate Thu Aug 21 18:18:27 EDT 2025
Sun Aug 24 04:14:07 EDT 2025
Fri Jul 25 20:59:50 EDT 2025
Mon Jul 21 05:49:42 EDT 2025
Wed Jan 22 16:56:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords COVID-19
indoor transport
residence time
evaporation
aerosol
Language English
License 2021 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3628-d6b6a98cd4fa77f4adcd6fe976a9547d508c668bb1fa904c9237db956feb056f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2003-9634
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8447420
PMID 34118165
PQID 2582730623
PQPubID 105551
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8447420
proquest_miscellaneous_2540512879
proquest_journals_2582730623
pubmed_primary_34118165
wiley_primary_10_1111_ina_12868_INA12868
PublicationCentury 2000
PublicationDate November 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Malden
– name: Hoboken
PublicationTitle Indoor air
PublicationTitleAlternate Indoor Air
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2007; 17
1946; 44
2013; 47
2009; 40
2020; 20
2020; 382
2020; 40
2017; 27
2006; 16
1934; 20
2020; 105
2019; 16
2019; 19
2005
2020; 145
2020; 10
2020; 169
2008; 70
2010; 20
2006; 41
2020; 196
2020; 130
2020
2018; 115
2000; 31
2011; 42
2020; 117
2011; 46
2005; 2
2012; 9
1966
References_xml – volume: 169
  start-page: 106591
  year: 2020
  article-title: A relationship for the diffusion coefficient in eddy diffusion based indoor dispersion modelling
  publication-title: Build Environ
– volume: 20
  start-page: 95
  year: 2010
  end-page: 111
  article-title: Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigation
  publication-title: Indoor Air
– volume: 145
  start-page: 106112
  year: 2020
  article-title: Quantitative assessment of the risk of airborne transmission of SARS‐CoV‐2 infection: prospective and retrospective applications
  publication-title: Environ Int
– year: 2005
– volume: 196
  issue: 107788
  year: 2020
  article-title: Probable airborne transmission of SARS‐CoV‐2 in a poorly ventilated restaurant
  publication-title: Build Environ
– volume: 115
  start-page: 1081
  issue: 5
  year: 2018
  end-page: 1086
  article-title: Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 44
  start-page: 471
  issue: 6
  year: 1946
  end-page: 479
  article-title: The size and the duration of air‐carriage of respiratory droplets and droplet‐nuclei
  publication-title: J Hyg (Lond)
– volume: 31
  start-page: 463
  issue: 4
  year: 2000
  end-page: 476
  article-title: Modeling indoor particle deposition from turbulent flow onto smooth surfaces
  publication-title: J Aerosol Sci
– year: 2020
  article-title: Probability of aerosol transmission of SARS‐CoV‐2
  publication-title: MedRxiv
– volume: 10
  start-page: 21174
  year: 2020
  article-title: Size distribution of virus laden droplets from expiratory ejecta of infected subjects
  publication-title: Sci Rep
– volume: 130
  start-page: 104866
  year: 2020
  article-title: Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS‐CoV‐2 transmission by inhalation indoors
  publication-title: Saf Sci
– volume: 117
  start-page: 11875
  issue: 22
  year: 2020
  end-page: 11877
  article-title: The airborne lifetime of small speech droplets and their potential importance in SARS‐CoV‐2 transmission
  publication-title: Proc Natl Acad Sci U. S. A
– volume: 382
  start-page: 1564
  issue: 16
  year: 2020
  end-page: 1567
  article-title: Aerosol and surface stability of SARS‐CoV‐2 as compared with SARS‐CoV‐1
  publication-title: N Engl J Med
– volume: 16
  start-page: 335
  issue: 5
  year: 2006
  end-page: 347
  article-title: Droplet fate in indoor environments, or can we prevent the spread of infection?
  publication-title: Indoor Air
– volume: 40
  start-page: 902
  issue: 5
  year: 2020
  end-page: 907
  article-title: Consideration of the aerosol transmission for COVID‐19 and public health
  publication-title: Risk Anal
– volume: 41
  start-page: 1691
  year: 2006
  end-page: 1702
  article-title: Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment
  publication-title: Build Environ
– start-page: 1
  year: 1966
  end-page: 27
– volume: 105
  start-page: 569
  issue: 3
  year: 2020
  end-page: 570
  article-title: Putting a balance on the aerosolization debate around SARS‐CoV‐2
  publication-title: J Hosp Infect
– volume: 16
  start-page: 20180779
  issue: 150
  year: 2019
  article-title: Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology
  publication-title: J R Soc Interface
– volume: 27
  start-page: 179
  issue: 1
  year: 2017
  end-page: 190
  article-title: Evaporation and dispersion of respiratory droplets from coughing
  publication-title: Indoor Air
– volume: 42
  start-page: 839
  issue: 12
  year: 2011
  end-page: 851
  article-title: Modality of human expired aerosol size distributions
  publication-title: J Aerosol Sci
– volume: 46
  start-page: 2042
  year: 2011
  end-page: 2051
  article-title: Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough
  publication-title: Build Environ
– volume: 17
  start-page: 211
  issue: 3
  year: 2007
  end-page: 225
  article-title: How far droplets can move in indoor environments ‐ revisiting the Wells evaporation‐falling curve
  publication-title: Indoor Air
– volume: 40
  start-page: 256
  issue: 3
  year: 2009
  end-page: 269
  article-title: Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities
  publication-title: J Aerosol Sci
– volume: 70
  start-page: 820
  issue: 3
  year: 2008
  end-page: 867
  article-title: Quantifying the routes of transmission for pandemic influenza
  publication-title: Bull Math Biol
– volume: 20
  start-page: 611
  year: 1934
  end-page: 618
  article-title: On air‐borne infection. Study II. Droplets and droplet nuclei
  publication-title: Am J Hyg
– volume: 2
  start-page: 143
  issue: 3
  year: 2005
  end-page: 154
  article-title: Toward understanding the risk of secondary airborne infection: emission of respirable pathogens
  publication-title: J Occup Environ Hyg
– volume: 105
  start-page: 381
  issue: 2
  year: 2020
  end-page: 382
  article-title: Putting some context to the aerosolization debate around SARS‐CoV‐2
  publication-title: J Hosp Infect
– volume: 19
  start-page: 101
  year: 2019
  article-title: Recognition of aerosol transmission of infectious agents: a commentary
  publication-title: BMC Infect Dis
– volume: 9
  start-page: 443
  issue: 7
  year: 2012
  end-page: 449
  article-title: Quantity and size distribution of cough‐generated aerosol particles produced by influenza patients during and after illness
  publication-title: J Occup Environ Hyg
– volume: 47
  start-page: 373
  year: 2013
  end-page: 382
  article-title: Association of airborne virus infectivity and survivability with its carrier particle size
  publication-title: Aerosol Sci Technol
– volume: 20
  start-page: 656
  issue: 6
  year: 2020
  end-page: 657
  article-title: Viral dynamics in mild and severe cases of COVID‐19
  publication-title: Lancet Infect Dis
SSID ssj0017393
Score 2.4451716
Snippet In the ongoing COVID‐19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study...
In the ongoing COVID-19 pandemic situation, exposure assessment and control strategies for aerosol transmission path are feebly understood. A recent study...
SourceID pubmedcentral
proquest
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1786
SubjectTerms aerosol
Aerosols
Air Microbiology
Air Pollution, Indoor
COVID-19
Droplets
Ejecta
Evaporation
Exact solutions
Gravity
Humans
Indoor environments
indoor transport
Original
Pandemics
residence time
Residence time distribution
SARS-CoV-2
Viral diseases
Viral Load
Viruses
Title Modeling the viral load dependence of residence times of virus‐laden droplets from COVID‐19‐infected subjects in indoor environments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fina.12868
https://www.ncbi.nlm.nih.gov/pubmed/34118165
https://www.proquest.com/docview/2582730623
https://www.proquest.com/docview/2540512879
https://pubmed.ncbi.nlm.nih.gov/PMC8447420
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-0668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017393
  issn: 0905-6947
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0905-6947
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-0668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017393
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9RAFH6UeqkHtVbtaltG8OAlJclOZhI8bVuXtmCFYqUHIcxPWrokZbO59NSzJ_9G_xLfm2zCVj2IEELImwlJ3ryZb2be-x7AO0kkaan1UWoSFfEx15FWxkVcmlQHirjAU_DpTBxf8NPL7HINPvSxMB0_xLDgRpYR-msycKWbFSOnrAXYuQoK9E3GWdiiPR-ooxJiegs8e3EWiYLLJasQefEMNf-GKv90jlwFrWHUmT6Fb_37ds4mN_vtQu-bu9-oHP_zg57BkyUaZZOu-WzCmquew-MVjsIt-E7Z0ihmnSFUZOQSPGOzWlnWp881jtWe4ay9S0_KQrZ6uoVl2-bn_Y-ZQgGzc3JVXzSMAlrY4eevJ0coSwo8dQ5hzrKm1bQs1LDrCg9b13O2Goj3Ai6mH78cHkfLBA7RLY6LeWSFFqqg9EheSem5ssYK7xABqSLj0iI4NELkWideFTE3CDal1Thj804jMPPjl7Be1ZXbBsZlrkwhdaYFYg4uVSIsUc-lsXO-MNkIdnpVlksrbMo0yxGdxYjwRvB2EKP90KaIqlzdUhmErPjbZTGCV53my9uO6KPEER4BkMCHywdtYihA3NwPJdX1VeDozjmXPI1H8D6ofKjRz7lQ2WVQdnlyNgkXr_-96BvYSMm1JoRE7sD6Yt66XcRGC70HjyYHRwfTvWAMvwBojBKl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeeNMuFDASBy6pktSxE4lL1VLtQrtIqEW9oMhPUXWVVJvNhRNnTvzG_pLOOJtoCxwQUhRFGTtKMh77sz3zDcAbSSRpqfVRahIV8V2uI62Mi7g0qQ4UcYGn4Hgqxqf8w1l2tgbv-liYjh9iWHAjywj9NRk4LUivWDmlLcDeVeS34Dbtz5FZHnweyKMS4noLTHtxFomCyyWvEPnxDFX_hiv_dI9cha1h3Dm8D1_7N-7cTS522oXeMd9_I3P83096APeWgJTtdS3oIay56hFsrNAUPoaflDCNwtYZokVGXsEzNquVZX0GXeNY7RlO3LsMpSwkrKdbWLZtrn78mikUMDsnb_VFwyimhe1_-jI5QFlS4KnzCXOWNa2mlaGGnVd42Lqes9VYvCdwevj-ZH8cLXM4RJc4NOaRFVqogjIkeSWl58oaK7xDEKSKjEuL-NAIkWudeFXE3CDelFbjpM07jdjM7z6F9aqu3BYwLnNlCqkzLRB2cKkSYYl9Lo2d84XJRrDd67JcGmJTplmOAC1GkDeC14MYTYj2RVTl6pbKIGrF3y6LEWx2qi8vO66PEgd5xEACHy5vNIqhANFz35RU598CTXfOueRpPIK3QedDjX7ahcoug7LLyXQvXDz796Kv4M745PioPJpMPz6Huyl52oQIyW1YX8xb9wKh0kK_DBZxDcJdFU8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiF64E27UMBIHLikSlLHTtRT1bLq8lgQoqgHpMhPUXWVrDabCyfOnPiN_SXMOJtoCxwQUhRFGSdKMh77G2fmG4AXkkjSUuuj1CQq4vtcR1oZF3FpUh0o4gJPwbupODnlr8-ysw046HNhOn6IYcGNLCOM12Tgc-vXjJyqFuDgKvJrcJ0L9K4IEX0cuKMSonoLRHtxFomCyxWtEIXxDJf-DVb-GR25jlrDtDO-DV_6B-6iTS722qXeM99-43L8zze6A7dWcJQddv3nLmy46h5srZEU3ocfVC6NktYZYkVGMcEzNquVZX39XONY7Rm67V19UhbK1dMpbNs2l99_zhQKmF1QrPqyYZTRwo7ef54coywpcNdFhDnLmlbTulDDzivcbF0v2Hom3gM4Hb_6dHQSrSo4RHOcGPPICi1UQfWRvJLSc2WNFd4hBFJFxqVFdGiEyLVOvCpibhBtSqvRZfNOIzLz-w9hs6ortwOMy1yZQupMCwQdXKpEWOKeS2PnfGGyEez2qixXZtiUaZYjPIsR4o3g-SBGA6K_IqpydUttELPiZ5fFCLY7zZfzjumjxCkeEZDAm8srfWJoQOTcVyXV-ddA0p1zLnkaj-BlUPlwRe90obLLoOxyMj0MB4_-vekzuPHheFy-nUzfPIabKYXZhPTIXdhcLlr3BHHSUj8N9vALipgT_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+viral+load+dependence+of+residence+times+of+virus%E2%80%90laden+droplets+from+COVID%E2%80%9019%E2%80%90infected+subjects+in+indoor+environments&rft.jtitle=Indoor+air&rft.au=Srinivasan%2C+Anand&rft.au=Krishan%2C+Jayant&rft.au=Bathula%2C+Sreekanth&rft.au=Mayya%2C+Yelia+S&rft.date=2021-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0905-6947&rft.eissn=1600-0668&rft.volume=31&rft.issue=6&rft.spage=1786&rft.epage=1797&rft_id=info:doi/10.1111%2Fina.12868&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-6947&client=summon