Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series

In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptiv...

Full description

Saved in:
Bibliographic Details
Published inInformation Processing in Medical Imaging Vol. 24; pp. 626 - 637
Main Authors Lorenzi, Marco, Ziegler, Gabriel, Alexander, Daniel C., Ourselin, Sebastien
Format Book Chapter Journal Article
LanguageEnglish
Published Cham Springer International Publishing 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319199917
3319199919
ISSN0302-9743
1011-2499
1611-3349
1611-3349
DOI10.1007/978-3-319-19992-4_49

Cover

Abstract In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptively accounts for local spatial correlations of the data, and the covariance structure is effectively parameterised by the Kronecker product of covariance matrices of very small size, each encoding only a single direction in space. We provide a simple and flexible framework for within- and between-subject modelling and prediction. In particular, we introduce the Hoffman-Ribak method for efficient inference on posterior processes and its uncertainty. The proposed framework is applied in the context of longitudinal modelling in Alzheimer’s disease. We firstly demonstrate the advantage of our non-parametric method for modelling of within-subject structural changes. The results show that non-parametric methods demonstrably outperform conventional parametric methods. Then the framework is extended to optimize complex parametrized covariate kernels. Using Bayesian model comparison via marginal likelihood the framework enables to compare different hypotheses about individual change processes of images.
AbstractList In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptively accounts for local spatial correlations of the data, and the covariance structure is effectively parameterised by the Kronecker product of covariance matrices of very small size, each encoding only a single direction in space. We provide a simple and flexible framework for within- and between-subject modelling and prediction. In particular, we introduce the Hoffman-Ribak method for efficient inference on posterior processes and its uncertainty. The proposed framework is applied in the context of longitudinal modelling in Alzheimer’s disease. We firstly demonstrate the advantage of our non-parametric method for modelling of within-subject structural changes. The results show that non-parametric methods demonstrably outperform conventional parametric methods. Then the framework is extended to optimize complex parametrized covariate kernels. Using Bayesian model comparison via marginal likelihood the framework enables to compare different hypotheses about individual change processes of images.
Author Ziegler, Gabriel
Alexander, Daniel C.
Lorenzi, Marco
Ourselin, Sebastien
Author_xml – sequence: 1
  givenname: Marco
  surname: Lorenzi
  fullname: Lorenzi, Marco
  email: m.lorenzi@ucl.ac.uk
– sequence: 2
  givenname: Gabriel
  surname: Ziegler
  fullname: Ziegler, Gabriel
– sequence: 3
  givenname: Daniel C.
  surname: Alexander
  fullname: Alexander, Daniel C.
– sequence: 4
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26221708$$D View this record in MEDLINE/PubMed
BookMark eNp9kNlKAzEUhqNW7GLfQCQvEM02Sy611FpwA-t1yEzOlOhMpkxapG9v2qrgjVcH_o3DN0Q933pA6ILRK0Zpdq2ynAgimCJMKcWJ1FIdoXGURRT3mjxGA5YyRoSQ6uSPx7IeGlBBOVGZFH00DOGdUsozxc9Qn6ecs4zmA_Q0rSpXOvBrPDObEJzx-KVrSwiB3JoAFj-2Fura-SU23kYPrCvXrvW4rfC8MUvAC9cAfoXOQThHp5WpA4y_7wi93U0Xk3vy8DybT24eyEpIqgg3MinLVMXfwSpW0USqrEyKyhSJFQCJFFmepyxNOBNUFoYVlJdpleSWcQ6lGKHksLvxK7P9NHWtV51rTLfVjOodPx1haKEjDr1npXf8Yu_y0Fttigbsb-kHSAzwQyBEyy-h00XbfoT_V78Arax2qw
ContentType Book Chapter
Journal Article
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
ABOKW
UNPAY
DOI 10.1007/978-3-319-19992-4_49
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783319199924
3319199927
EISSN 1611-3349
Editor Westin, Carl-Fredrik
Alexander, Daniel C.
Cardoso, M. Jorge
Ourselin, Sebastien
Editor_xml – sequence: 1
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
  email: S.Ourselin@ucl.ac.uk
– sequence: 2
  givenname: Daniel C.
  surname: Alexander
  fullname: Alexander, Daniel C.
  email: d.alexander@ucl.ac.uk
– sequence: 3
  givenname: Carl-Fredrik
  surname: Westin
  fullname: Westin, Carl-Fredrik
  email: westin@bwh.harvard.edu
– sequence: 4
  givenname: M. Jorge
  orcidid: 0000-0003-1284-2558
  surname: Cardoso
  fullname: Cardoso, M. Jorge
  email: m.jorge.cardoso@ucl.ac.uk
EndPage 637
ExternalDocumentID oai:pubmedcentral.nih.gov:6742508
26221708
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: (UK)/MR/J01107X/1
– fundername: Wellcome Trust
  grantid: /091593/Z/10/Z
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
---
CGR
CUY
CVF
ECM
EIF
NPM
ABOKW
UNPAY
ID FETCH-LOGICAL-p3409-2a45cc69611ed91f05497c5bfab5d3ee543788616521304ba1b02c6f58d122ec3
IEDL.DBID UNPAY
ISBN 9783319199917
3319199919
ISSN 0302-9743
1011-2499
1611-3349
IngestDate Sun Oct 26 03:59:40 EDT 2025
Wed Feb 19 02:34:35 EST 2025
Wed Sep 17 04:04:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p3409-2a45cc69611ed91f05497c5bfab5d3ee543788616521304ba1b02c6f58d122ec3
Notes G. Ziegler—Joint first author. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6742508
PMID 26221708
PageCount 12
ParticipantIDs unpaywall_primary_10_1007_978_3_319_19992_4_49
pubmed_primary_26221708
springer_books_10_1007_978_3_319_19992_4_49
PublicationCentury 2000
PublicationDate 2015
2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 24th International Conference, IPMI 2015, Sabhal Mor Ostaig, Isle of Skye, UK, June 28 - July 3, 2015, Proceedings
PublicationTitle Information Processing in Medical Imaging
PublicationTitleAlternate Inf Process Med Imaging
PublicationYear 2015
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0002792
ssj0001558554
ssib004238817
ssib006573086
Score 2.141909
Snippet In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal...
SourceID unpaywall
pubmed
springer
SourceType Open Access Repository
Index Database
Publisher
StartPage 626
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - pathology
Cerebral Ventricles - pathology
Computer Simulation
Female
Gaussian Process Model
General Linear Model Approach
Humans
Image Interpretation, Computer-Assisted - methods
Image Time Series
Kronecker Product
Magnetic Resonance Imaging - methods
Male
Marginal Likelihood
Middle Aged
Models, Statistical
Normal Distribution
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Spatio-Temporal Analysis
Time Factors
Title Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series
URI http://link.springer.com/10.1007/978-3-319-19992-4_49
https://www.ncbi.nlm.nih.gov/pubmed/26221708
https://www.ncbi.nlm.nih.gov/pmc/articles/6742508
UnpaywallVersion submittedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1Be0Aclo8FtggqH7ihhDqx3fpYUPkSVGi1XcHJsh1bINpQ0VZo99fjyUeFOCBxthwlfolnXmbeM8CRND5LjZWRyMIWyGTgrNp5FjHLODUaa71IFG-H4nLEru_5_QrQWgtTNO1b8xTn40mcPz0WvZXTiT2p-8RORCBzHOW9TcFD-t2A5mh4138oqwVJJKumeoH2fCmTH-RyZScAqnZQe59ETBUOmnXgWVZC12FtkU_1vzc9Hn8INucb8Lu-zbLH5DlezE1s_39ycPzWc2zCjyr1JP1yaAtWXL4NG_WxDqT6yn_CcFDYSoRoRC70YoYqS1LpCaLTEPQyggeoFV7eROdZGMNiDwJMXjy5moQdiqCyhOCfNzfbgdH54M_ZZVQduxBNU4b1Fs24tUKGFXSZpD4kdbJrufHa8Cx1jjP0oBdUhMifdpjR1HQSKzzvZTRJnE13oZG_5O4XENOhnvvA6KjMkKjKrvdIyLjt9ixNRAv2ytVX09JbQyUiCSSp02vBcQ2HQroxU7W_ckBRpSqgqAoUFaLYgniJ2PJSX03Y_-6EA2jMXxfuMGQgc9OGZn9wffO3DavDu9t29Qa-A3G517Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kHsSD70dFJQdvsmuzm6TNUaX1ARYRC3oKSTZBsd0W2yL6683so4gHwXPIsptvNzPfznxfAE6k8VlqrIxEFrZAJgNn1c6ziFnGqdFY60WieNcX1wN2-8SfloDWWpiiad-a1zgfjuL89aXorZyM7FndJ3YmApnjKO9dFjyk3w1YHvTvz5_LakESyaqpXqA9X8rkD7lc2QmAqh3U3icRU4WDZh14FpXQVViZ5xP9-aGHwx_BprcOD_Vtlj0mb_F8ZmL79cvB8V_PsQFrVepJzsuhTVhy-Ras18c6kOor34Z-t7CVCNGIXOn5FFWWpNITRBch6GUED1ArvLyJzrMwhsUeBJiMPbkZhR2KoLKE4J83N92BQa_7eHkdVccuRJOUYb1FM26tkGEFXSapD0mdbFtuvDY8S53jDD3oBRUh8qctZjQ1rcQKzzsZTRJn011o5OPc7QMxLeq5D4yOygyJqmx7j4SM23bH0kQ0Ya9cfTUpvTVUIpJAklqdJpzWcCikG1NV-ysHFFWqAoqqQFEhik2IF4gtLvXXhIP_TjiExux97o5CBjIzx9U79w27S9UT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Processing+in+Medical+Imaging&rft.au=Lorenzi%2C+Marco&rft.au=Ziegler%2C+Gabriel&rft.au=Alexander%2C+Daniel+C.&rft.au=Ourselin%2C+Sebastien&rft.atitle=Efficient+Gaussian+Process-Based+Modelling+and+Prediction+of+Image+Time+Series&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319199917&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=626&rft.epage=637&rft_id=info:doi/10.1007%2F978-3-319-19992-4_49
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon