Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series
In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptiv...
Saved in:
| Published in | Information Processing in Medical Imaging Vol. 24; pp. 626 - 637 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
2015
|
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9783319199917 3319199919 |
| ISSN | 0302-9743 1011-2499 1611-3349 1611-3349 |
| DOI | 10.1007/978-3-319-19992-4_49 |
Cover
| Abstract | In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptively accounts for local spatial correlations of the data, and the covariance structure is effectively parameterised by the Kronecker product of covariance matrices of very small size, each encoding only a single direction in space. We provide a simple and flexible framework for within- and between-subject modelling and prediction. In particular, we introduce the Hoffman-Ribak method for efficient inference on posterior processes and its uncertainty. The proposed framework is applied in the context of longitudinal modelling in Alzheimer’s disease. We firstly demonstrate the advantage of our non-parametric method for modelling of within-subject structural changes. The results show that non-parametric methods demonstrably outperform conventional parametric methods. Then the framework is extended to optimize complex parametrized covariate kernels. Using Bayesian model comparison via marginal likelihood the framework enables to compare different hypotheses about individual change processes of images. |
|---|---|
| AbstractList | In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal processes we provide a very efficient and robust formulation for the marginal likelihood computation and the posterior prediction. The model adaptively accounts for local spatial correlations of the data, and the covariance structure is effectively parameterised by the Kronecker product of covariance matrices of very small size, each encoding only a single direction in space. We provide a simple and flexible framework for within- and between-subject modelling and prediction. In particular, we introduce the Hoffman-Ribak method for efficient inference on posterior processes and its uncertainty. The proposed framework is applied in the context of longitudinal modelling in Alzheimer’s disease. We firstly demonstrate the advantage of our non-parametric method for modelling of within-subject structural changes. The results show that non-parametric methods demonstrably outperform conventional parametric methods. Then the framework is extended to optimize complex parametrized covariate kernels. Using Bayesian model comparison via marginal likelihood the framework enables to compare different hypotheses about individual change processes of images. |
| Author | Ziegler, Gabriel Alexander, Daniel C. Lorenzi, Marco Ourselin, Sebastien |
| Author_xml | – sequence: 1 givenname: Marco surname: Lorenzi fullname: Lorenzi, Marco email: m.lorenzi@ucl.ac.uk – sequence: 2 givenname: Gabriel surname: Ziegler fullname: Ziegler, Gabriel – sequence: 3 givenname: Daniel C. surname: Alexander fullname: Alexander, Daniel C. – sequence: 4 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26221708$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kNlKAzEUhqNW7GLfQCQvEM02Sy611FpwA-t1yEzOlOhMpkxapG9v2qrgjVcH_o3DN0Q933pA6ILRK0Zpdq2ynAgimCJMKcWJ1FIdoXGURRT3mjxGA5YyRoSQ6uSPx7IeGlBBOVGZFH00DOGdUsozxc9Qn6ecs4zmA_Q0rSpXOvBrPDObEJzx-KVrSwiB3JoAFj-2Fura-SU23kYPrCvXrvW4rfC8MUvAC9cAfoXOQThHp5WpA4y_7wi93U0Xk3vy8DybT24eyEpIqgg3MinLVMXfwSpW0USqrEyKyhSJFQCJFFmepyxNOBNUFoYVlJdpleSWcQ6lGKHksLvxK7P9NHWtV51rTLfVjOodPx1haKEjDr1npXf8Yu_y0Fttigbsb-kHSAzwQyBEyy-h00XbfoT_V78Arax2qw |
| ContentType | Book Chapter Journal Article |
| Copyright | Springer International Publishing Switzerland 2015 |
| Copyright_xml | – notice: Springer International Publishing Switzerland 2015 |
| DBID | CGR CUY CVF ECM EIF NPM ABOKW UNPAY |
| DOI | 10.1007/978-3-319-19992-4_49 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| EISBN | 9783319199924 3319199927 |
| EISSN | 1611-3349 |
| Editor | Westin, Carl-Fredrik Alexander, Daniel C. Cardoso, M. Jorge Ourselin, Sebastien |
| Editor_xml | – sequence: 1 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien email: S.Ourselin@ucl.ac.uk – sequence: 2 givenname: Daniel C. surname: Alexander fullname: Alexander, Daniel C. email: d.alexander@ucl.ac.uk – sequence: 3 givenname: Carl-Fredrik surname: Westin fullname: Westin, Carl-Fredrik email: westin@bwh.harvard.edu – sequence: 4 givenname: M. Jorge orcidid: 0000-0003-1284-2558 surname: Cardoso fullname: Cardoso, M. Jorge email: m.jorge.cardoso@ucl.ac.uk |
| EndPage | 637 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6742508 26221708 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Medical Research Council grantid: (UK)/MR/J01107X/1 – fundername: Wellcome Trust grantid: /091593/Z/10/Z |
| GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 --- CGR CUY CVF ECM EIF NPM ABOKW UNPAY |
| ID | FETCH-LOGICAL-p3409-2a45cc69611ed91f05497c5bfab5d3ee543788616521304ba1b02c6f58d122ec3 |
| IEDL.DBID | UNPAY |
| ISBN | 9783319199917 3319199919 |
| ISSN | 0302-9743 1011-2499 1611-3349 |
| IngestDate | Sun Oct 26 03:59:40 EDT 2025 Wed Feb 19 02:34:35 EST 2025 Wed Sep 17 04:04:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p3409-2a45cc69611ed91f05497c5bfab5d3ee543788616521304ba1b02c6f58d122ec3 |
| Notes | G. Ziegler—Joint first author. Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6742508 |
| PMID | 26221708 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1007_978_3_319_19992_4_49 pubmed_primary_26221708 springer_books_10_1007_978_3_319_19992_4_49 |
| PublicationCentury | 2000 |
| PublicationDate | 2015 2015-00-00 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Germany |
| PublicationSeriesSubtitle | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 24th International Conference, IPMI 2015, Sabhal Mor Ostaig, Isle of Skye, UK, June 28 - July 3, 2015, Proceedings |
| PublicationTitle | Information Processing in Medical Imaging |
| PublicationTitleAlternate | Inf Process Med Imaging |
| PublicationYear | 2015 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
| SSID | ssj0002792 ssj0001558554 ssib004238817 ssib006573086 |
| Score | 2.141909 |
| Snippet | In this work we propose a novel Gaussian process-based spatio-temporal model of time series of images. By assuming separability of spatial and temporal... |
| SourceID | unpaywall pubmed springer |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 626 |
| SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - pathology Cerebral Ventricles - pathology Computer Simulation Female Gaussian Process Model General Linear Model Approach Humans Image Interpretation, Computer-Assisted - methods Image Time Series Kronecker Product Magnetic Resonance Imaging - methods Male Marginal Likelihood Middle Aged Models, Statistical Normal Distribution Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Spatio-Temporal Analysis Time Factors |
| Title | Efficient Gaussian Process-Based Modelling and Prediction of Image Time Series |
| URI | http://link.springer.com/10.1007/978-3-319-19992-4_49 https://www.ncbi.nlm.nih.gov/pubmed/26221708 https://www.ncbi.nlm.nih.gov/pmc/articles/6742508 |
| UnpaywallVersion | submittedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB1Be0Aclo8FtggqH7ihhDqx3fpYUPkSVGi1XcHJsh1bINpQ0VZo99fjyUeFOCBxthwlfolnXmbeM8CRND5LjZWRyMIWyGTgrNp5FjHLODUaa71IFG-H4nLEru_5_QrQWgtTNO1b8xTn40mcPz0WvZXTiT2p-8RORCBzHOW9TcFD-t2A5mh4138oqwVJJKumeoH2fCmTH-RyZScAqnZQe59ETBUOmnXgWVZC12FtkU_1vzc9Hn8INucb8Lu-zbLH5DlezE1s_39ycPzWc2zCjyr1JP1yaAtWXL4NG_WxDqT6yn_CcFDYSoRoRC70YoYqS1LpCaLTEPQyggeoFV7eROdZGMNiDwJMXjy5moQdiqCyhOCfNzfbgdH54M_ZZVQduxBNU4b1Fs24tUKGFXSZpD4kdbJrufHa8Cx1jjP0oBdUhMifdpjR1HQSKzzvZTRJnE13oZG_5O4XENOhnvvA6KjMkKjKrvdIyLjt9ixNRAv2ytVX09JbQyUiCSSp02vBcQ2HQroxU7W_ckBRpSqgqAoUFaLYgniJ2PJSX03Y_-6EA2jMXxfuMGQgc9OGZn9wffO3DavDu9t29Qa-A3G517Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kHsSD70dFJQdvsmuzm6TNUaX1ARYRC3oKSTZBsd0W2yL6683so4gHwXPIsptvNzPfznxfAE6k8VlqrIxEFrZAJgNn1c6ziFnGqdFY60WieNcX1wN2-8SfloDWWpiiad-a1zgfjuL89aXorZyM7FndJ3YmApnjKO9dFjyk3w1YHvTvz5_LakESyaqpXqA9X8rkD7lc2QmAqh3U3icRU4WDZh14FpXQVViZ5xP9-aGHwx_BprcOD_Vtlj0mb_F8ZmL79cvB8V_PsQFrVepJzsuhTVhy-Ras18c6kOor34Z-t7CVCNGIXOn5FFWWpNITRBch6GUED1ArvLyJzrMwhsUeBJiMPbkZhR2KoLKE4J83N92BQa_7eHkdVccuRJOUYb1FM26tkGEFXSapD0mdbFtuvDY8S53jDD3oBRUh8qctZjQ1rcQKzzsZTRJn011o5OPc7QMxLeq5D4yOygyJqmx7j4SM23bH0kQ0Ya9cfTUpvTVUIpJAklqdJpzWcCikG1NV-ysHFFWqAoqqQFEhik2IF4gtLvXXhIP_TjiExux97o5CBjIzx9U79w27S9UT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Information+Processing+in+Medical+Imaging&rft.au=Lorenzi%2C+Marco&rft.au=Ziegler%2C+Gabriel&rft.au=Alexander%2C+Daniel+C.&rft.au=Ourselin%2C+Sebastien&rft.atitle=Efficient+Gaussian+Process-Based+Modelling+and+Prediction+of+Image+Time+Series&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319199917&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=626&rft.epage=637&rft_id=info:doi/10.1007%2F978-3-319-19992-4_49 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |