MoSBOTs: Magnetically Driven Biotemplated MoS2‐Based Microrobots for Biomedical Applications
2D layered molybdenum disulfide (MoS2) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absor...
Saved in:
| Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 33; pp. e2203821 - n/a |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1613-6810 1613-6829 1613-6829 |
| DOI | 10.1002/smll.202203821 |
Cover
| Abstract | 2D layered molybdenum disulfide (MoS2) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2‐based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near‐infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on‐the‐fly biorecognition in minimally invasive oncotherapy applications. The proposed multi‐therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic‐related applications, circumventing current challenges of ablative procedures.
2D‐molybdenum disulfide (MoS2) is a promising nanoplatform for biomedical applications. MoS2 transforms near‐infrared radiation into heat, making this material an excellent photothermal agent for ablation therapies. In order to deliver this material precisely, the integration of 2D‐MoS2 into biotemplated magnetic helical microrobots is proposed (MoSBOTs). These mobile micromachines show promising applications such as targeted photothermal therapies and on‐the‐fly molecular biorecognition. |
|---|---|
| AbstractList | 2D layered molybdenum disulfide (MoS2) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2‐based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near‐infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on‐the‐fly biorecognition in minimally invasive oncotherapy applications. The proposed multi‐therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic‐related applications, circumventing current challenges of ablative procedures. 2D layered molybdenum disulfide (MoS2) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2‐based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near‐infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on‐the‐fly biorecognition in minimally invasive oncotherapy applications. The proposed multi‐therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic‐related applications, circumventing current challenges of ablative procedures. 2D‐molybdenum disulfide (MoS2) is a promising nanoplatform for biomedical applications. MoS2 transforms near‐infrared radiation into heat, making this material an excellent photothermal agent for ablation therapies. In order to deliver this material precisely, the integration of 2D‐MoS2 into biotemplated magnetic helical microrobots is proposed (MoSBOTs). These mobile micromachines show promising applications such as targeted photothermal therapies and on‐the‐fly molecular biorecognition. 2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures.2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures. |
| Author | Asunción‐Nadal, Victor Wendel‐Garcia, Pedro D. Terzopoulou, Anastasia Gong, De Veciana, Andrea Puigmartí‐Luis, Josep Pané, Salvador Ning, Shen Chen, Xiang‐Zhong Sevim, Semih Escarpa, Alberto Franco, Carlos Cai, Jun Jurado‐Sánchez, Beatriz |
| Author_xml | – sequence: 1 givenname: Victor orcidid: 0000-0001-6331-5219 surname: Asunción‐Nadal fullname: Asunción‐Nadal, Victor organization: Universidad de Alcalá – sequence: 2 givenname: Carlos surname: Franco fullname: Franco, Carlos email: carlos.franco@chem.ethz.ch organization: ETH Zurich – sequence: 3 givenname: Andrea surname: Veciana fullname: Veciana, Andrea organization: ETH Zurich – sequence: 4 givenname: Shen surname: Ning fullname: Ning, Shen organization: ETH Zurich – sequence: 5 givenname: Anastasia surname: Terzopoulou fullname: Terzopoulou, Anastasia organization: ETH Zurich – sequence: 6 givenname: Semih surname: Sevim fullname: Sevim, Semih organization: ETH Zurich – sequence: 7 givenname: Xiang‐Zhong surname: Chen fullname: Chen, Xiang‐Zhong organization: ETH Zurich – sequence: 8 givenname: De surname: Gong fullname: Gong, De organization: School of Mechanical Engineering and Automation Beihang University – sequence: 9 givenname: Jun surname: Cai fullname: Cai, Jun organization: School of Mechanical Engineering and Automation Beihang University – sequence: 10 givenname: Pedro D. surname: Wendel‐Garcia fullname: Wendel‐Garcia, Pedro D. organization: University Hospital of Zurich – sequence: 11 givenname: Beatriz surname: Jurado‐Sánchez fullname: Jurado‐Sánchez, Beatriz organization: Universidad de Alcalá – sequence: 12 givenname: Alberto surname: Escarpa fullname: Escarpa, Alberto email: alberto.escarpa@uah.es organization: Universidad de Alcalá – sequence: 13 givenname: Josep surname: Puigmartí‐Luis fullname: Puigmartí‐Luis, Josep organization: Institució Catalana de Recerca i Estudis Avançats (ICREA) – sequence: 14 givenname: Salvador orcidid: 0000-0003-0147-8287 surname: Pané fullname: Pané, Salvador email: vidalp@ethz.ch organization: ETH Zurich |
| BookMark | eNqFkLtOwzAYhS1UJNrCyhyJhSWtL4nTsLXlKqXq0LJiOY2NXDlxsFOqbDwCz8iT4KioSCwsv4-l7_yXMwC9ylQCgEsERwhCPHal1iMMMYZkgtEJ6COKSEgnOO0dNYJnYODcFkKCcJT0wcvCrGbLtbsJFvy1Eo3acK3b4Naqd1EFM2UaUdaaN6IIPIm_Pj5n3HUftbHGmtw0LpDGdmQpis4dTOtae9EoU7lzcCq5duLi5x2C5_u79fwxzJYPT_NpFtYEUhTKKC-ilEuMc5jECYxRFHEqKZZFLKSXBSIC56hAKeFSxESKnMIol75AShMyBOND311V83bvb2C1VSW3LUOQdfGwLh52jMc7rg-O2pq3nXANK5XbCK15JczOMUxTkkwgxZFHr_6gW7Ozlb-H4QQSTOMUdSukB2qvtGj_Gc9Wiyz7XeYb4nGG0Q |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Small published by Wiley‐VCH GmbH 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Small published by Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 The Authors. Small published by Wiley‐VCH GmbH – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Small published by Wiley-VCH GmbH. |
| DBID | 24P 7SR 7U5 8BQ 8FD JG9 L7M 7X8 ADTOC UNPAY |
| DOI | 10.1002/smll.202203821 |
| DatabaseName | Wiley Online Library Open Access Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | oai:research-collection.ethz.ch:20.500.11850/560734 SMLL202203821 |
| Genre | article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 2000021_181988 – fundername: European Research Council Starting Grant microCrysFact funderid: 677020 – fundername: Swiss National Science Foundation funderid: 200021L_192012 – fundername: MCIN/AEI/10.13039/501100011033 funderid: PID2020‐118154GB‐100 – fundername: MCIN/AEI/10.13039/501100011033 funderid: PID2020‐116612RB‐C33 – fundername: Community of Madrid funderid: S2018/NMT‐4349 – fundername: ERC‐2017‐CoG HINBOTS funderid: 771565 – fundername: Universidad de Alcalá funderid: PlanPropioUAH |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 LH4 31~ AANHP AASGY ACBWZ ACRPL ACYXJ ADNMO ADTOC AGQPQ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF UNPAY |
| ID | FETCH-LOGICAL-p3061-f4bd49af22b075705144a6f62fd5ef4a6d13e2b1d193afe53feb604bf60406673 |
| IEDL.DBID | 24P |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Sun Sep 07 11:22:10 EDT 2025 Fri Sep 05 13:56:18 EDT 2025 Fri Jul 25 11:47:32 EDT 2025 Wed Jan 22 16:24:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p3061-f4bd49af22b075705144a6f62fd5ef4a6d13e2b1d193afe53feb604bf60406673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0147-8287 0000-0001-6331-5219 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202203821 |
| PQID | 2703265917 |
| PQPubID | 1046358 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1002_smll_202203821 proquest_miscellaneous_2693780624 proquest_journals_2703265917 wiley_primary_10_1002_smll_202203821_SMLL202203821 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2010; 10 2017; 8 2017; 2 2017; 3 2006; 418 2021; 22 2019; 55 2019; 11 2022; 23 2014; 26 2020; 14 2020; 11 2021; 71 2012; 13 2005; 25 2015; 48 2020; 5 2021; 32 2013; 16 2014; 2 2020; 92 1999; 178 2001; 13 2014; 6 2008; 60 2018; 35 2021; 7 2019; 9 2010; 38 2015; 5 2021; 3 2016; 19 2019; 31 2020; 185 2018; 468 2015; 96 2021; 141 2003; 72 2016; 12 2018; 24 2012; 2 2020; 395 2018; 517 2015; 119 2022; 429 2009; 4 2019; 173 2018; 10 2016; 26 2016; 8 2016; 9 2019; 131 2018; 14 |
| References_xml | – volume: 24 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 8 start-page: 1 year: 2017 publication-title: Beilstein J. Nanotechnol. – volume: 7 start-page: 1682 year: 2021 publication-title: IEEE Robot. Autom. Lett. – volume: 12 start-page: 2046 year: 2016 publication-title: Small – volume: 38 start-page: 79 year: 2010 publication-title: Crit. Rev. Biomed. Eng. – volume: 92 start-page: 9188 year: 2020 publication-title: Anal. Chem. – volume: 131 start-page: 3160 year: 2019 publication-title: Angew. Chem. – volume: 19 start-page: 140 year: 2016 publication-title: Mater. Today – volume: 14 start-page: 2880 year: 2020 publication-title: ACS Nano – volume: 173 start-page: 101 year: 2019 publication-title: Colloids Surf., B – volume: 48 start-page: 100 year: 2015 publication-title: Accounts Chem. Res. – volume: 31 start-page: 1 year: 2019 publication-title: Adv. Mater. – volume: 468 start-page: 148 year: 2018 publication-title: J. Magn. Magn. Mater. – volume: 5 start-page: 931 year: 2015 publication-title: Theranostics – volume: 9 start-page: 3992 year: 2019 publication-title: Theranostics – volume: 3 start-page: 2325 year: 2017 publication-title: ACS Biomater. Sci. Eng. – volume: 25 start-page: 69 year: 2005 publication-title: Radiographics – volume: 185 year: 2020 publication-title: Colloids Surf., B – volume: 10 start-page: 4875 year: 2010 publication-title: J. Nanosci. Nanotechnol. – volume: 2 start-page: 3 year: 2012 publication-title: Theranostics – volume: 5 year: 2020 publication-title: Signal Transduction Targeted Ther. – volume: 4 start-page: 710 year: 2009 publication-title: Nat. Nanotechnol. – volume: 72 start-page: 875 year: 2003 publication-title: Am. Surg. – volume: 11 start-page: 132 year: 2020 publication-title: Chem. Sci. – volume: 23 year: 2022 publication-title: Mater. Today Chem. – volume: 3 start-page: 462 year: 2021 publication-title: ACS Mater. Lett. – volume: 395 start-page: 1078 year: 2020 publication-title: Lancet – volume: 22 year: 2021 publication-title: Appl. Mater. Today – volume: 14 start-page: S152 year: 2018 publication-title: J. Cancer Res. Ther. – volume: 9 start-page: 17 year: 2016 publication-title: Sens. Bio‐Sensing Res. – volume: 26 start-page: 1277 year: 2014 publication-title: Electroanalysis – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 35 start-page: 39 year: 2018 publication-title: J. Photochem. Photobiol., C – volume: 26 start-page: 6270 year: 2016 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 4745 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 4271 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 189 year: 2017 publication-title: Nanomaterials – volume: 71 start-page: 209 year: 2021 publication-title: Ca‐Cancer J. Clin. – volume: 13 start-page: 129 year: 2001 publication-title: Eur. J. Ultrasound – volume: 517 start-page: 204 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 178 start-page: 592 year: 1999 publication-title: Am. J. Surg. – volume: 2 start-page: 4678 year: 2017 publication-title: ACS Omega – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 418 start-page: 36 year: 2006 publication-title: Chem. Phys. Lett. – volume: 16 start-page: 192 year: 2013 publication-title: Tech. Vasc. Interv. Radiol. – volume: 96 start-page: 617 year: 2015 publication-title: Diagn. Interv. Imaging – volume: 55 start-page: 5540 year: 2019 publication-title: Chem. Commun. – volume: 141 year: 2021 publication-title: Biomed. Pharmacother. – volume: 6 start-page: 6469 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 60 start-page: 1307 year: 2008 publication-title: Adv. Drug Delivery Rev. – volume: 2 start-page: 7862 year: 2014 publication-title: J. Mater. Chem. A – volume: 13 start-page: 6639 year: 2012 publication-title: Int. J. Mol. Sci. – volume: 5 start-page: 1 year: 2015 publication-title: Sci. Rep. – volume: 8 start-page: 3107 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces |
| SSID | ssj0031247 |
| Score | 2.5499475 |
| Snippet | 2D layered molybdenum disulfide (MoS2) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility... 2D layered molybdenum disulfide (MoS2) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility... 2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility... |
| SourceID | unpaywall proquest wiley |
| SourceType | Open Access Repository Aggregation Database Publisher |
| StartPage | e2203821 |
| SubjectTerms | 2D materials Ablation Bioaccumulation Biocompatibility Biomedical materials biotemplating Cancer Cyanobacteria Electrical properties Microrobots minimally invasive medicine Molybdenum disulfide Nanomaterials Nanotechnology phototherapy |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgOwAH3ojxUpE4cOlI0zRruW3ANCEGSGMSXKiSNUGIrp3WTQhO_AR-I78EZx3jdYBTHdWqqtixv8jOF4A9DHjcUZzYDufMZpoLOyA41JxEmF24X1HmoHDznDfa7PTau_4ki_5BL0BJ2SNmWfsebt05uiObhiL3EHYXoNg-v6zemA0VpiTb8Gp9yjT4IGgk9CDrxqbIQClxfep8g5Izw6Qnnh5FHH8Hp6PsUl_I-7KyESmhaSp5KA8Hstx5_k3Z-PePL8L8GGNa1dwplmBKJcsw94V5cAVum2mrdnGVHVpNcZfkBxnjJ-u4b4KfVbtPDWVVjDg0slCTvr281jDd4cD07_VTmQ4yC-Gu0ezmpR6r-qUUvgrt-snVUcMeX7Vg93DP4NiayYgFQlMqEUNUDCk6E1xzqiNPaRQjx1VUOhHiPaGV52olOWESTcpGN4euQSFJE7UOlh9EHbcjuRaBYFoKSSRj-ECoxTquFiXY-pj_cLxespBi4KFoV6dSgt3Ja_R0U74QiUqHqMMRSvmEU1aC_Yndwl7OyhHm_Ms0NNYOJ9YuAR2Z9Q-1sNU8O5uMNv7__U2YNXLeErgFhUF_qLYRpgzkzthB3wHOJd-f priority: 102 providerName: Unpaywall |
| Title | MoSBOTs: Magnetically Driven Biotemplated MoS2‐Based Microrobots for Biomedical Applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202203821 https://www.proquest.com/docview/2703265917 https://www.proquest.com/docview/2693780624 http://hdl.handle.net/20.500.11850/560734 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6829 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PT8IwFG8MHNSD8W-cIpmJBy8LW9cV5g1EQgxDIpDgxaVlrTEZG2EQw82P4Gf0k_i6wYSTiZetzV4vfa_v_dbX9ytCN-DwqCWoaViUEoNIygzXhK6kZgDRhdaqQhUKe13aHpLHkTPaqOLP-CHyDTe1MlJ_rRY440nllzQ0mYQqdYCxaddUJXnRAjCjbByT3toX2xC90utVIGgZinlrTdto4sr2-C2AubuIpmz5wcJwG7KmMad1iA5WYFGvZ9o9QjsiOkb7GxSCJ-jVi_uNp0Fyp3vsLcoqEsOl3pwpL6Y33mPFPRUCoAx0kMTfn18NiFvQUQfxZjGP54kOuFVJTrKcjV7fyGmfomHrYXDfNlZ3JhhTAP-WIQkPiMskxhzAQFWxmxNGJcUycISEZmDZAnMrAODGpHBsKTg1CQfdkPQK0DNUiOJInCO95gZje8ypZC4jkjNuckLgBZiJjG3JNFRaT5m_MvzEx-BBMHXgJ1BD1_lnMFmVh2CRiBcgQwET1UyKiYZu86n2pxm9hp8RKWNfKcjPFaQhnGriDzG_73U6ee_iP4Mu0Z5qZ6f8Sqgwny3EFSCPOS-nxgXP5jMuo-Kw26u__ABT39Qg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTlGSQGlqiJ415bNgpUBZqC1FZiIrIbGyGlSdWHEBs_gd_IL-EuaQOdkJgSJ-fFZ9999t19ZuwMDR64GhzbBRC2MCDtmoNNA06I3gWqFU2Fwn4bmj1x91SeZxNSLUzGD5EfuNHKSO01LXA6kC79sIaOBxHFDjh3vCqVki8LcIH2X1w8zo2xh-4rvV8FvZZN1Ftz3kaHlxb7LyDMlWk8lO9vMooWMWvqdBobbH2GFq3LTL2bbEnHW2ztF4fgNnv2k079oTu-sHz5EmclidG7dT0iM2bVXxMin4oQUYYWSvKvj886Oi5sUCbeKFHJZGwhcCXJQRa0sS5_BbV3WK9x071q2rNLE-whon_XNkKFoiYN5wrRQIXozYUEA9yEZW3wNXQ9zZUbInKTRpc9oxU4QqFyRHoH6C4rxEms95hVrYV9r6_AyJoURknlKCHwgaBJ9D0ji-xwPmTBbOaPA44mhEMZd4FFdpr_xjlLgQgZ62SKMoCgqOoAF0V2ng91MMz4NYKMSZkHpKAgV1CR8VQTf4gFHb_Vylv7_-l0wlaaXb8VtG7b9wdslb5nKX-HrDAZTfURwpCJOk4n2jcsT9Tz |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hkFgO7IiyBokDl5TEcUzCjVIqlhYQbSVORHZjI0RIqi5CcOIT-Ea-hHHSBsoFCU6Jk4mU2J6Z58zMM8AuGjxmS2aZNmPUpIpx07ewqZgVondh3oHUhcK1S3bapOe37jCbUNfCZPwQ-Q83rRmpvdYKLtuh2v9iDe0-RTp2QIjleLqUfIK6vqez-so3OYOUg-4r3V8FvZapqbeGvI0W2R99fgRhTvXjNn955lE0illTp1OZAzF83SzX5LHY74li6_UHk-O_vmceZgeQ1DjK5tACjMl4EWa-ERUuwV0tqZeuGt1Do8bv46zuMXoxyh1tK43SQ6IZriKEraGBkuTj7b2E3hEbOt2vk4ik1zUQHWvJpywyZBx9i5wvQ7Ny0jg-NQc7M5htXGLYpqIipD5XhAiEHAeaQ51yphhRoSsVnoa2I4mwQ4SHXEnXUVIwiwqcATTdaHQFxuMklqtgeH7YclqCKe5zqgQXlqAUD4jMaMtRvAAbw3EJBurVDQjaKcJcXGoWYCe_jYqhox08lkkfZRgiL89ihBZgLx_PoJ2ReAQZXTMJdK8Hea8XgKRj9ItYUK9Vq3lr7S8PbcPkdbkSVM8uL9ZhWl_O0go3YLzX6ctNhDo9sZVO5k842PZs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgOwAH3ojxUpE4cOlI0zRruW3ANCEGSGMSXKiSNUGIrp3WTQhO_AR-I78EZx3jdYBTHdWqqtixv8jOF4A9DHjcUZzYDufMZpoLOyA41JxEmF24X1HmoHDznDfa7PTau_4ki_5BL0BJ2SNmWfsebt05uiObhiL3EHYXoNg-v6zemA0VpiTb8Gp9yjT4IGgk9CDrxqbIQClxfep8g5Izw6Qnnh5FHH8Hp6PsUl_I-7KyESmhaSp5KA8Hstx5_k3Z-PePL8L8GGNa1dwplmBKJcsw94V5cAVum2mrdnGVHVpNcZfkBxnjJ-u4b4KfVbtPDWVVjDg0slCTvr281jDd4cD07_VTmQ4yC-Gu0ezmpR6r-qUUvgrt-snVUcMeX7Vg93DP4NiayYgFQlMqEUNUDCk6E1xzqiNPaRQjx1VUOhHiPaGV52olOWESTcpGN4euQSFJE7UOlh9EHbcjuRaBYFoKSSRj-ECoxTquFiXY-pj_cLxespBi4KFoV6dSgt3Ja_R0U74QiUqHqMMRSvmEU1aC_Yndwl7OyhHm_Ms0NNYOJ9YuAR2Z9Q-1sNU8O5uMNv7__U2YNXLeErgFhUF_qLYRpgzkzthB3wHOJd-f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoSBOTs%3A+Magnetically+Driven+Biotemplated+MoS2%E2%80%90Based+Microrobots+for+Biomedical+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Asunci%C3%B3n%E2%80%90Nadal%2C+Victor&rft.au=Franco%2C+Carlos&rft.au=Veciana%2C+Andrea&rft.au=Ning%2C+Shen&rft.date=2022-08-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=33&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202203821&rft.externalDBID=10.1002%252Fsmll.202203821&rft.externalDocID=SMLL202203821 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |