TransSLC: Skin Lesion Classification in Dermatoscopic Images Using Transformers

Early diagnosis and treatment of skin cancer can reduce patients’ fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and recognition. However, the accurate classification of...

Full description

Saved in:
Bibliographic Details
Published inLecture notes in computer science Vol. 13413; pp. 651 - 660
Main Authors Sarker, Md Mostafa Kamal, Moreno-García, Carlos Francisco, Ren, Jinchang, Elyan, Eyad
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031120527
3031120523
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-031-12053-4_48

Cover

More Information
Summary:Early diagnosis and treatment of skin cancer can reduce patients’ fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and recognition. However, the accurate classification of skin lesions using CNN-based models is still challenging, given the inconsistent shape of lesion areas (leading to intra-class variance) and inter-class similarities. In addition, CNN-based models with massive downsampling operations often result in loss of local feature attributes from the dermatoscopic images. Recently, transformer-based models have been able to tackle this problem by exploiting both local and global characteristics, employing self-attention processes, and learning expressive long-range representations. Motivated by the superior performance of these methods, in this paper we present a transformer-based model for skin lesion classification. We apply a transformers-based model using bidirectional encoder representation from the dermatoscopic image to perform the classification task. Extensive experiments were carried out using the public dataset HAM10000, and promising results of $$90.22\%$$ , $$99.54\%$$ , $$94.05\%$$ , and $$96.28\%$$ in accuracy, precision, recall, and F1 score respectively, were achieved. This opens new research directions towards further exploration of transformers-based methods to solve some of the key challenging problems in medical image classification, namely generalisation to samples from a different distribution.
Bibliography:Original Abstract: Early diagnosis and treatment of skin cancer can reduce patients’ fatality rates significantly. In the area of computer-aided diagnosis (CAD), the Convolutional Neural Network (CNN) has been widely used for image classification, segmentation, and recognition. However, the accurate classification of skin lesions using CNN-based models is still challenging, given the inconsistent shape of lesion areas (leading to intra-class variance) and inter-class similarities. In addition, CNN-based models with massive downsampling operations often result in loss of local feature attributes from the dermatoscopic images. Recently, transformer-based models have been able to tackle this problem by exploiting both local and global characteristics, employing self-attention processes, and learning expressive long-range representations. Motivated by the superior performance of these methods, in this paper we present a transformer-based model for skin lesion classification. We apply a transformers-based model using bidirectional encoder representation from the dermatoscopic image to perform the classification task. Extensive experiments were carried out using the public dataset HAM10000, and promising results of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90.22\%$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.54\%$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$94.05\%$$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.28\%$$\end{document} in accuracy, precision, recall, and F1 score respectively, were achieved. This opens new research directions towards further exploration of transformers-based methods to solve some of the key challenging problems in medical image classification, namely generalisation to samples from a different distribution.
ISBN:9783031120527
3031120523
ISSN:0302-9743
1611-3349
1611-3349
DOI:10.1007/978-3-031-12053-4_48