10N‐Nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria
The acridine orange derivative, 10N‐nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N‐nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phospha...
Saved in:
Published in | European journal of biochemistry Vol. 209; no. 1; pp. 267 - 273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.10.1992
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0014-2956 1432-1033 |
DOI | 10.1111/j.1432-1033.1992.tb17285.x |
Cover
Abstract | The acridine orange derivative, 10N‐nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N‐nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The stoichiometry has been found to be 2 mol 10N‐nonyl acridine orange/mol cardiolipin and 1 mol dye/mol phosphatidylserine or phosphatidylinositol, while, with zwitterionic phospholipids, significant binding could not be detected. The affinity constants were 2 × 106 M−1 for cardiolipin‐10N‐nonyl‐acridine‐orange association and only 7 × 104 M−1 for that of phosphatidylserine and phosphatidylinositol association. The high affinity of the dye for cardiolipin may be explained by two essential interactions; firstly an electrostatic interaction between the quaternary ammonium of nonyl acridine orange and the ionized phosphate residues of cardiolipin and secondly, hydrophobic interactions between adjacent chromophores. A linear relationship was demonstrated between the cardiolipin content of model membranes and the incorporated dye. Consequently, a convenient and rapid method for cardiolipin quantification in membranes was established and applied to the cardiolipin‐containing organelle, the mitochondrion. |
---|---|
AbstractList | The acridine orange derivative, 10N-nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N-nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The stoichiometry has been found to be 2 mol 10N-nonyl acridine orange/mol cardiolipin and 1 mol dye/mol phosphatidylserine or phosphatidylinositol, while, with zwitterionic phospholipids, significant binding could not be detected. The affinity constants were 2 x 10(6) M-1 for cardiolipin-10N-nonyl-acridine-orange association and only 7 x 10(4) M-1 for that of phosphatidylserine and phosphatidylinositol association. The high affinity of the dye for cardiolipin may be explained by two essential interactions; firstly an electrostatic interaction between the quaternary ammonium of nonyl acridine orange and the ionized phosphate residues of cardiolipin and secondly, hydrophobic interactions between adjacent chromophores. A linear relationship was demonstrated between the cardiolipin content of model membranes and the incorporated dye. Consequently, a convenient and rapid method for cardiolipin quantification in membranes was established and applied to the cardiolipin-containing organelle, the mitochondrion.The acridine orange derivative, 10N-nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N-nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The stoichiometry has been found to be 2 mol 10N-nonyl acridine orange/mol cardiolipin and 1 mol dye/mol phosphatidylserine or phosphatidylinositol, while, with zwitterionic phospholipids, significant binding could not be detected. The affinity constants were 2 x 10(6) M-1 for cardiolipin-10N-nonyl-acridine-orange association and only 7 x 10(4) M-1 for that of phosphatidylserine and phosphatidylinositol association. The high affinity of the dye for cardiolipin may be explained by two essential interactions; firstly an electrostatic interaction between the quaternary ammonium of nonyl acridine orange and the ionized phosphate residues of cardiolipin and secondly, hydrophobic interactions between adjacent chromophores. A linear relationship was demonstrated between the cardiolipin content of model membranes and the incorporated dye. Consequently, a convenient and rapid method for cardiolipin quantification in membranes was established and applied to the cardiolipin-containing organelle, the mitochondrion. The acridine orange derivative, 10N-nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N-nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The acridine orange derivative, 10N-nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N-nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The stoichiometry has been found to be 2 mol 10N-nonyl acridine orange/mol cardiolipin and 1 mol dye/mol phosphatidylserine or phosphatidylinositol, while, with zwitterionic phospholipids, significant binding could not be detected. The affinity constants were 2 x 10(6) M-1 for cardiolipin-10N-nonyl-acridine-orange association and only 7 x 10(4) M-1 for that of phosphatidylserine and phosphatidylinositol association. The high affinity of the dye for cardiolipin may be explained by two essential interactions; firstly an electrostatic interaction between the quaternary ammonium of nonyl acridine orange and the ionized phosphate residues of cardiolipin and secondly, hydrophobic interactions between adjacent chromophores. A linear relationship was demonstrated between the cardiolipin content of model membranes and the incorporated dye. Consequently, a convenient and rapid method for cardiolipin quantification in membranes was established and applied to the cardiolipin-containing organelle, the mitochondrion. The acridine orange derivative, 10N‐nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model systems to demonstrate that 10N‐nonyl acridine orange binds to negatively charged phospholipids (cardiolipin, phosphatidylinositol and phosphatidylserine). The stoichiometry has been found to be 2 mol 10N‐nonyl acridine orange/mol cardiolipin and 1 mol dye/mol phosphatidylserine or phosphatidylinositol, while, with zwitterionic phospholipids, significant binding could not be detected. The affinity constants were 2 × 106 M−1 for cardiolipin‐10N‐nonyl‐acridine‐orange association and only 7 × 104 M−1 for that of phosphatidylserine and phosphatidylinositol association. The high affinity of the dye for cardiolipin may be explained by two essential interactions; firstly an electrostatic interaction between the quaternary ammonium of nonyl acridine orange and the ionized phosphate residues of cardiolipin and secondly, hydrophobic interactions between adjacent chromophores. A linear relationship was demonstrated between the cardiolipin content of model membranes and the incorporated dye. Consequently, a convenient and rapid method for cardiolipin quantification in membranes was established and applied to the cardiolipin‐containing organelle, the mitochondrion. |
Author | JULIEN, Raymond PETIT, Jean‐Michel MAFTAH, Abderrahman RATINAUD, Marie‐Hélène |
Author_xml | – sequence: 1 givenname: Jean‐Michel surname: PETIT fullname: PETIT, Jean‐Michel – sequence: 2 givenname: Abderrahman surname: MAFTAH fullname: MAFTAH, Abderrahman – sequence: 3 givenname: Marie‐Hélène surname: RATINAUD fullname: RATINAUD, Marie‐Hélène – sequence: 4 givenname: Raymond surname: JULIEN fullname: JULIEN, Raymond |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4322260$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/1396703$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9q3DAQh0VJSTdpH6EgSunNrv5Ztk6lDUkTCMkh7VnIktzVopUcS8tmb6VP0Gfsk0QmJj1mQAzMfPod5jsBRyEGC8AHjGpc6vOmxoySCiNKaywEqXOPW9I19cMrsHpeHYEVQphVRDT8DThJaYMQ4oK3x-AY09IRXYE_GN38-_33JoaDh0pPzrhgYZxU-GWhC9lOSucE9y6voVaTcdG70QWogoHK-7hPMK8tvN-pkN3gtMouBhiHMnUJjuuYypu_mJIGXYpeZWvg1uWo1zGYyam34PWgfLLvln4Kfl6c_zi7rK5vv1-dfb2uRtKJtiIYG2JsQ5jlvGm6HulGiYEboQXuOe2JobjjVnW9ZUwNmgymZw1jVFDTc01Pwaen3HGK9zubsty6pK33Kti4S7KlBHelXgQxZ0xwxAv4fgF3_dYaOU5uq6aDXK5b9h-XvUpa-aFcVbv0jBVRhHBUsC9P2N55e_ifguRsW27krFTOSuVsWy625YO8OP92R3hLHwFXqqOi |
CODEN | EJBCAI |
ContentType | Journal Article |
Copyright | 1993 INIST-CNRS |
Copyright_xml | – notice: 1993 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM 8FD FR3 M7Z P64 7X8 |
DOI | 10.1111/j.1432-1033.1992.tb17285.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1432-1033 |
EndPage | 273 |
ExternalDocumentID | 1396703 4322260 FEBS267 |
Genre | article Journal Article Comparative Study |
GroupedDBID | -DZ -~X .55 .GA .GJ .Y3 10A 1OC 24P 29G 31~ 36B 3O- 4.4 51W 51X 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5RE 66C 7PT 8-1 8-4 8-5 930 A01 A03 AAEVG AAHHS AAZKR ABDBF ABDPE ABEFU ABJNI ACCFJ ACFBH ACGFS ACMXC ACNCT ACUHS ACXQS ADBBV ADIZJ ADZOD AEEZP AEIMD AEQDE AEUQT AFBPY AFPWT AFZJQ AI. AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR BAWUL BY8 C45 CAG CO8 COF CS3 D-7 D-F DIK E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P G-S GODZA GX1 HZI IH2 IHE IPNFZ L7B LH4 LP6 LP7 LW6 MVM O9- OBS OHT OVD P4B P4D QB0 RIG ROL SDH SUPJJ SV3 TEORI TR2 TUS UB1 VH1 WH7 WOW WQJ WRC WXI X7M XG1 Y6R YFH YSK YUY ZGI ZXP AETEA IQODW CGR CUY CVF ECM EIF NPM PKN 1OB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7Z P64 7X8 |
ID | FETCH-LOGICAL-p2897-211d2de524e66558b0c5a9f6d9c91b63b2d3186ea8be44afc2fdb4544393db6c3 |
IEDL.DBID | 24P |
ISSN | 0014-2956 |
IngestDate | Fri Sep 05 05:08:31 EDT 2025 Fri Sep 05 07:15:38 EDT 2025 Wed Feb 19 02:34:13 EST 2025 Wed Apr 02 07:25:25 EDT 2025 Wed Jan 22 16:16:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Diphosphatidylglycerol Mitochondria Acridine derivatives Phospholipid Molecular probe Method Quantitative analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2897-211d2de524e66558b0c5a9f6d9c91b63b2d3186ea8be44afc2fdb4544393db6c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1432-1033.1992.tb17285.x |
PMID | 1396703 |
PQID | 16449606 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_73218888 proquest_miscellaneous_16449606 pubmed_primary_1396703 pascalfrancis_primary_4322260 wiley_primary_10_1111_j_1432_1033_1992_tb17285_x_FEBS267 |
PublicationCentury | 1900 |
PublicationDate | October 1992 |
PublicationDateYYYYMMDD | 1992-10-01 |
PublicationDate_xml | – month: 10 year: 1992 text: October 1992 |
PublicationDecade | 1990 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | European journal of biochemistry |
PublicationTitleAlternate | Eur J Biochem |
PublicationYear | 1992 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | 1990; 52 1982; 14 1990; 1021 1983; 210 1991; 34 1957; 226 1949; 177 1966; 8 1986; 59 1980; 93 1985; 82 1985; 822 1985; 260 1983; 79 1990; 186 1981; 20 1985; 24 1990; 260 1980; 597 1991; 5 1977 1988; 940 1990; 3 1967; 8 1984; 31 1948; 172 1986; 861 1979; 254 1981; 80 1981; 256 1990 1988; 9 1982; 139 1984; 778 1989; 164 1986; 25 1981; 317 1959; 37 |
References_xml | – volume: 260 start-page: 13003 year: 1985 end-page: 13007 publication-title: J. Biol. Chem. – volume: 940 start-page: 197 year: 1988 end-page: 208 publication-title: Biochim. Biophys. Acta – volume: 24 start-page: 3821 year: 1985 end-page: 3826 publication-title: Biochemistry – volume: 93 start-page: 1238 year: 1980 end-page: 1246 publication-title: Biochem. Biophys. Res. Commun. – start-page: 209 year: 1977 end-page: 222 – volume: 226 start-page: 497 year: 1957 end-page: 509 publication-title: J. Biol. Chem. – volume: 34 start-page: 157 year: 1991 end-page: 176 publication-title: J. Toxicol. Envir. Health – volume: 164 start-page: 185 year: 1989 end-page: 190 publication-title: Biochem. Biophys, Res. Commun. – volume: 82 start-page: 51 year: 1985 end-page: 66 publication-title: Histochemistry – volume: 861 start-page: 83 year: 1986 end-page: 94 publication-title: Biochim. Biophys. Acta – volume: 597 start-page: 1 year: 1980 end-page: 14 publication-title: Biochim. Biophys. Acta – volume: 317 start-page: 67 year: 1981 end-page: 90 publication-title: J. Physiol. – volume: 8 start-page: 115 year: 1966 end-page: 118 publication-title: Methods Enzymol. – volume: 14 start-page: 141 year: 1982 end-page: 157 publication-title: J. Bioenerg. Biomembr. – volume: 177 start-page: 751 year: 1949 end-page: 766 publication-title: J. Biol. Chem. – volume: 822 start-page: 1 year: 1985 end-page: 42 publication-title: Biochim. Biophys. Acta – volume: 59 start-page: 3393 year: 1986 end-page: 3397 publication-title: Bull. Chem. Soc. Jpn. – volume: 210 start-page: 867 year: 1983 end-page: 873 publication-title: Biochem. J. – volume: 52 start-page: 149 year: 1990 end-page: 167 publication-title: Mech. Age. Dev. – volume: 5 start-page: 104 year: 1991 publication-title: Cytometry – volume: 186 start-page: 130 year: 1990 end-page: 137 publication-title: Exp. Cell Res. – volume: 8 start-page: 170 year: 1967 end-page: 180 publication-title: J. Lipid Res. – volume: 1021 start-page: 217 year: 1990 end-page: 226 publication-title: Biochim. Biophys. Acta – volume: 260 start-page: 236 year: 1990 end-page: 240 publication-title: FEBS Lett. – volume: 778 start-page: 359 year: 1984 end-page: 371 publication-title: Biochim. Biophys. Acta – volume: 37 start-page: 911 year: 1959 end-page: 917 publication-title: Can. J. Biochem. Physiol. – volume: 9 start-page: 206 year: 1988 end-page: 212 publication-title: Cytometry – volume: 256 start-page: 1874 year: 1981 end-page: 1880 publication-title: J. Biol. Chem. – volume: 172 start-page: 619 year: 1948 end-page: 635 publication-title: J. Biol. Chem. – volume: 20 start-page: 191 year: 1981 end-page: 194 publication-title: Adv. Mol. Relax. Interact. Proc. – volume: 139 start-page: 109 year: 1982 end-page: 112 publication-title: FEBS Lett. – volume: 31 start-page: 161 year: 1984 end-page: 170 publication-title: Rev. Fr. Corps Gras – volume: 80 start-page: 163 year: 1981 end-page: 170 publication-title: J. Coll. Inter. Science – start-page: 291 year: 1990 end-page: 314 – volume: 25 start-page: 115 year: 1986 end-page: 130 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 179 year: 1990 end-page: 188 publication-title: Cytotechnology – volume: 254 start-page: 5308 year: 1979 end-page: 5316 publication-title: J. Biol. Chem. – volume: 79 start-page: 443 year: 1983 end-page: 456 publication-title: Histochemistry |
SSID | ssj0006967 |
Score | 1.8832982 |
Snippet | The acridine orange derivative, 10N‐nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model... The acridine orange derivative, 10N-nonyl acridine orange, is an appropriate marker of the inner mitochondrial membrane in whole cells. We use membrane model... |
SourceID | proquest pubmed pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 267 |
SubjectTerms | 10N-nonyl acridine orange Acridine Orange - analogs & derivatives Acridine Orange - metabolism Animals Biological and medical sciences cardiolipin Cardiolipins - analysis Cardiolipins - metabolism cattle Cell Membrane - chemistry Cell structures and functions derivatives Fundamental and applied biological sciences. Psychology heart Liposomes - metabolism Male methodology Microscopy, Fluorescence mitochondria Mitochondria - chemistry Mitochondria and cell respiration Molecular and cellular biology Phosphatidylinositols - metabolism Phosphatidylserines - metabolism quantitation Rats Rats, Wistar Spectrophotometry Thermodynamics utilization |
Title | 10N‐Nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1432-1033.1992.tb17285.x https://www.ncbi.nlm.nih.gov/pubmed/1396703 https://www.proquest.com/docview/16449606 https://www.proquest.com/docview/73218888 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqeigXRHmo2wKdQ9VbUNavJEdArFClriq1SNwsv0KRILs0uyq9VfwCfiO_hBknbAGVC5FySJT44Pk8_sbzYuwTeQRj8GWmbCgyKUOV2aLIs4jPpS-ttJpyh7-O9dGx_HKiTvr0aMqF6epDLA7caGUkfU0L3Lr2ySIXHNWIEJRyx3dnjnotqV1klK-R5QvCO5ffFnpZV7qroDmUGUezoC9B2sf1PDMWxUraFqer7vpc_I-IPua1aWMarbKVnlHCXgeBt-xVbNbY-l6D1vTFH_gMKcYzHZ6vsTcH9_3d1tn1MB_f_r0ZU2g6WFQeuItFQEQ0pxGoigTlT7VAB7XgU9TqOfW5BtsEIG_97xaQPMLl3HbxRknEMKmBWhzD9OekxZt-CTganCHGkdYGuEAVgiq3CYj8DXY8OvxxcJT1HRmyKRpmRYbWYuAhKi6j1kqVLvfKVrUOla-GTgvHA-oIHW3popS29rwOTlKJvUoEp73YZEvNpInvGAyD91T83ssCSVHuraq8l5YqRuZCeT9g248m3ky76htGkm9I5wP28V4QBieO3By2iZN5a9AAlGSXPf9FIZDY4DVgm50EF4MjH9aoAwesTBL99_6BqSS4IaAYAorpgWKuzOhw_zvXxfuX__qBLadg4BQquMWWZr_mcRspz8ztJCTfATwD-tw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V7aFcEG2pWKB0Dohbqmz8k-TYVl0t0F0h0Uq9WY7tABLNLmRXwK3iCXhGnoQZJ7tQRC9EyiFR4oNnPP7mx98APOeMYPCuSJT1eSKlLxOb52kS6LlwhZVW89nhyVSPL-WrK3W1AZPVWZiOH2IdcOOVEe01L3AOSP-1ykVGdkQIPnOXHS0qbrakjghSbklNvgwTPcs3a8OsS91RaA5lkpFf0HOQ9oU9d4zFxZK2pfmqu0YX_0Kit4Ft3JlGD-B-DynxuNOBHdgIzS7sHTfkTl9_wxcYizxj9HwXtk9XDd724Pswnf68-THl2nS0ZD1oGwtIKtG8C8g0EnyAqkWO1KKLZasfudE12sYjp-u_tEjoET8tbVdwFGWMsxq5xzHO389auvkXT6PhB1JywrUer8mGkM1tPKn-Q7gcnV2cjpO-JUMyJ88sT8hd9JkPKpNBa6WKKnXKlrX2pSuHlRZV5slI6GCLKkhpa5fVvpLMsVcKX2kn9mGzmTXhEeDQO8fs907mhIpSZ1XpnLRMGZkK5dwADm5NvJl39BtGcnJIpwM4XAnC0MRxnsM2YbZsDXmAkh2zu7_IBSEbugaw30lwPTgBYk1GcABFlOjv93_4SiIzrCiGFcX0imK-mtHZydtM54___9dD2B5fTM7N-cvp6ydwL1YGx7rBp7C5-LwMB4R_FtWzqNW_ALcF_kI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hIgEXRFsqFiidA-KWKutXkmMpXZXXqhJU6s1ybAeQaHYhuwJuqL-gv5FfwoyTbimiFyLlkCjxwfN5_I3nBfCUPYIx-DLTLhSZUqHKXFHkWaTn0pdOOcO5w2-n5vBYvTrRJ0N6NOfC9PUhVgduvDKSvuYFPg_NX4tcClIjUnLKndhd1NxrSe8So7ypCIiMd6GOVnrZVKavoDlWmSCzYChBOsT1XDMWx0q6jqar6ftc_IuIXuW1aWOa3IO7A6PEvR4C63AjthuwudeSNX36A59hivFMh-cbcHv_or_bJpyN8-mvn-dTDk1HR8qDdrGIhIj2Q0SuIsH5Ux3yQS36FLX6mftco2sDsrf-W4dEHvHL0vXxRknEOGuQWxzj_OOso5t_CTQafiKME60NeEoqhFRuGwj59-F4cvB-_zAbOjJkczLMioysxSBC1EJFY7Qu69xrVzUmVL4a10bWIpCOMNGVdVTKNV40oVZcYq-SoTZebsFaO2vjA8Bx8J6L33tVECnKvdOV98pxxchcau9HsH1l4u28r75hFfuGTD6CnQtBWJo4dnO4Ns6WnSUDULFddv0XhSRiQ9cItnoJrgYnPmxIB46gTBK9fP-HqSSFZaBYBoodgGK_28nB83fCFA___9cduHX0YmLfvJy-fgR3Ulxwihp8DGuLr8u4TexnUT9JoP4NVSn9fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=10N%E2%80%90Nonyl+acridine+orange+interacts+with+cardiolipin+and+allows+the+quantification+of+this+phospholipid+in+isolated+mitochondria&rft.jtitle=European+journal+of+biochemistry&rft.au=PETIT%2C+Jean%E2%80%90Michel&rft.au=MAFTAH%2C+Abderrahman&rft.au=RATINAUD%2C+Marie%E2%80%90H%C3%A9l%C3%A8ne&rft.au=JULIEN%2C+Raymond&rft.date=1992-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0014-2956&rft.eissn=1432-1033&rft.volume=209&rft.issue=1&rft.spage=267&rft.epage=273&rft_id=info:doi/10.1111%2Fj.1432-1033.1992.tb17285.x&rft.externalDBID=10.1111%252Fj.1432-1033.1992.tb17285.x&rft.externalDocID=FEBS267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2956&client=summon |