Super-Sparse Regression for Fast Age Estimation from Faces at Test Time

Age estimation from faces is a challenging problem that has recently gained increasing relevance due to its potentially multi-faceted applications. Many current methods for age estimation rely on extracting computationally-demanding features from face images, and then use nonlinear regression to est...

Full description

Saved in:
Bibliographic Details
Published inImage Analysis and Processing -- ICIAP 2015 Vol. 9280; pp. 551 - 562
Main Authors Demontis, Ambra, Biggio, Battista, Fumera, Giorgio, Roli, Fabio
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2015
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319232339
9783319232331
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-23234-8_51

Cover

Abstract Age estimation from faces is a challenging problem that has recently gained increasing relevance due to its potentially multi-faceted applications. Many current methods for age estimation rely on extracting computationally-demanding features from face images, and then use nonlinear regression to estimate the subject’s age. This often requires matching the submitted face image against a set of face prototypes, potentially including all training face images, as in the case of kernel-based methods. In this work, we propose a super-sparse regression technique that can reach comparable performance with respect to other nonlinear regression techniques, while drastically reducing the number of reference prototypes required for age estimation. Given a similarity measure between faces, our technique learns a sparse set of virtual face prototypes, whose number is fixed a priori, along with a set of optimal weight coefficients to perform linear regression in the space induced by the similarity measure. We show that our technique does not only drastically reduce the number of reference prototypes without compromising estimation accuracy, but it can also provide more interpretable decisions.
AbstractList Age estimation from faces is a challenging problem that has recently gained increasing relevance due to its potentially multi-faceted applications. Many current methods for age estimation rely on extracting computationally-demanding features from face images, and then use nonlinear regression to estimate the subject’s age. This often requires matching the submitted face image against a set of face prototypes, potentially including all training face images, as in the case of kernel-based methods. In this work, we propose a super-sparse regression technique that can reach comparable performance with respect to other nonlinear regression techniques, while drastically reducing the number of reference prototypes required for age estimation. Given a similarity measure between faces, our technique learns a sparse set of virtual face prototypes, whose number is fixed a priori, along with a set of optimal weight coefficients to perform linear regression in the space induced by the similarity measure. We show that our technique does not only drastically reduce the number of reference prototypes without compromising estimation accuracy, but it can also provide more interpretable decisions.
Author Demontis, Ambra
Biggio, Battista
Fumera, Giorgio
Roli, Fabio
Author_xml – sequence: 1
  givenname: Ambra
  surname: Demontis
  fullname: Demontis, Ambra
  email: ambra.demontis@diee.unica.it
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
– sequence: 2
  givenname: Battista
  surname: Biggio
  fullname: Biggio, Battista
  email: battista.biggio@diee.unica
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
– sequence: 3
  givenname: Giorgio
  surname: Fumera
  fullname: Fumera, Giorgio
  email: fumera@diee.unica.it
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
– sequence: 4
  givenname: Fabio
  surname: Roli
  fullname: Roli, Fabio
  email: roli@diee.unica.it
  organization: Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
BookMark eNqNkNFOwjAUhquicSBv4MVeoNr2tFt7SQigCYmJ4HVTtjOcwjbb8f4WMHrrVZP_P9_pyTckg6ZtkJB7zh44Y_mjyTUFCtxQAQIk1VbxCzKEmJyC_JIkPOOcAkhz9VeAGZCEARPU5BJuSGJirkAC3JJxCB-MMa6UVjJLyGJ16NDTVed8wPQVtx5DqNsmrVqfzl3o08kW01no673rT7lv97EoMKSuT9cYJ9b1Hu_IdeV2Acc_74i8zWfr6RNdviyep5Ml7YTWPXW8zDBDyRCLvEBdKgZCc2ecUZWBTbYpVVlUgM7xghWgMFe5kkJkTMgqFiMizntD5-tmi95u2vYzWM7s0ZmNzizYKMKeFNmjswjJM9T59usQT7Z4pApseu92xbvrevTBZsJIrblVEmz89b-YyjgDpX6xbwNyfkU
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DBID FFUUA
DEWEY 621.367
DOI 10.1007/978-3-319-23234-8_51
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Visual Arts
Engineering
Computer Science
EISBN 3319232347
9783319232348
EISSN 1611-3349
Editor Murino, Vittorio
Puppo, Enrico
Editor_xml – sequence: 1
  fullname: Murino, Vittorio
– sequence: 2
  fullname: Puppo, Enrico
EndPage 562
ExternalDocumentID EBC6294881_543_575
EBC5610355_543_575
GroupedDBID 0D6
0DA
38.
AABBV
AAGZE
AAZAK
AAZUS
ABBVZ
ABMNI
ACKNT
ACRRC
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
IY-
LDH
SBO
SFQCF
TMQGW
TPJZQ
TSXQS
TWXRB
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-a1d6e6e40eec7ce8d503281a9a95f93b6bd5dcf3eaa1c0c35e75754226024fcf3
ISBN 3319232339
9783319232331
ISSN 0302-9743
IngestDate Wed Sep 17 03:13:45 EDT 2025
Mon Apr 07 01:52:47 EDT 2025
Thu May 29 15:58:35 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1637-1638TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-a1d6e6e40eec7ce8d503281a9a95f93b6bd5dcf3eaa1c0c35e75754226024fcf3
OCLC 919253433
PQID EBC5610355_543_575
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_23234_8_51
proquest_ebookcentralchapters_6294881_543_575
proquest_ebookcentralchapters_5610355_543_575
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 18th International Conference, Genoa, Italy, September 7-11, 2015, Proceedings, Part II
PublicationTitle Image Analysis and Processing -- ICIAP 2015
PublicationYear 2015
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Dept. Computer Sciences, Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: Fac. Engineering & Physical Sciences, University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zürich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University Dept. Computer Science, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Technical University of Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles Dept. Computer Science, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: Management & Systems (SIMS), University of California, Berkeley Dept. Computer Science & Informatio, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001558546
ssj0002792
Score 1.8093685
Snippet Age estimation from faces is a challenging problem that has recently gained increasing relevance due to its potentially multi-faceted applications. Many...
SourceID springer
proquest
SourceType Publisher
StartPage 551
SubjectTerms Image processing
Local Binary Pattern
Ridge Regression
Support Vector Machine
Support Vector Regression
Test Time
Title Super-Sparse Regression for Fast Age Estimation from Faces at Test Time
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5610355&ppg=575
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6294881&ppg=575
http://link.springer.com/10.1007/978-3-319-23234-8_51
Volume 9280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Nb9MwFMAtVi7AARggxpd84BYZNY7t1MdQtfsQQkjrpt0sJ3YQ0lZKk17463kvcZY0TELjErWpY7n5xc57z--DkI9Wg67DS8ecUIIJIXOYUnnKuPVp7LhIVNF4W3xVJxfi7EpedYXGQ3RJnX8qft8ZV_I_VOEccMUo2XuQve0UTsBn4AtHIAzHkfC7b2Zt3QVv0N3mNqnIwOsftX_GotP5afYtglevHD4X57uN37LzDSi0WLLhe-sH27obLm1VRxn0uoCJfxPcEDH-ZNk4btk6WsFLpAkbGVoLYjmyFnTWwpG9cWDyyo73NMwkQRGQd2FVYcnUvC2_9Nf6O3S5wPAovFSwmQlJZffSXcu2ZMoo3fXi81xxDctKbKRIDDba_GJYJQx300PJlANyAEObkIfZ4uzLZW9Tk6D8CIUhPN2wdZtkqf8bg_DJu4a5p2iM9sYbkWP1jDzBMBSK8SEw8OfkgV8fkqdBaaBhSa4OyeNBRkn4dvmj2tlrmm3r6gU5HsKmPWwKsCnCpgCb9rApwqYNbGprirApwn5JLpaL1fyEhcoZbMNns5rZ2CmvvJh6X6SFnzmJaRNjq62WpU5ylTvpijLx1sbFtEikTyWWQgbllosSfnhFJuufa_-a0Ny5aemUzEXshYcrtcUMQVyklmvH8yPCuhtmmv394FRctLenMiigg1Db0fxn-xH9IxJ1FAw2r0yXaBvwmcQAPtPgM4jvzT17f0se9bPkHZnU251_D1JmnX8ID9cfG_92sg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Image+Analysis+and+Processing+--+ICIAP+2015&rft.atitle=Super-Sparse+Regression+for+Fast+Age+Estimation+from+Faces+at+Test+Time&rft.date=2015-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319232331&rft.volume=9280&rft_id=info:doi/10.1007%2F978-3-319-23234-8_51&rft.externalDBID=575&rft.externalDocID=EBC6294881_543_575
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5610355-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6294881-l.jpg