Easy Multiple-Precision Divisors and Word-RAM Constants

For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form $$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$ , where $$\sigma _i$$ , $$\ell _i$$ and $$d_i$$ are nonnegative integers and $$0\le d_i...

Full description

Saved in:
Bibliographic Details
Published inMathematical Foundations of Computer Science 2015 Vol. 9235; pp. 372 - 383
Main Author Hagerup, Torben
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2015
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3662480530
9783662480533
ISSN0302-9743
1611-3349
DOI10.1007/978-3-662-48054-0_31

Cover

Abstract For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form $$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$ , where $$\sigma _i$$ , $$\ell _i$$ and $$d_i$$ are nonnegative integers and $$0\le d_i<b^w$$ , for $$i=1,\ldots ,k$$ . We study the efficient execution of arithmetic operations on (multiple-precision) integers of small (b, w) cover size on a word RAM with words of wb-ary digits and constant-time multiplication and division. In particular, it is shown that if A is an n-digit integer and B is a nonzero m-digit integer of (b, w) cover size k, then $$\lfloor A/B\rfloor $$ can be computed in $$O(1+{{(k n+m)}/w})$$ time. Our results facilitate a unified description of word-RAM algorithms operating on integers that may occupy a fraction of a word or several words. As an application, we consider the fast generation of integers of a special form for use in word-RAM computation. Many published word-RAM algorithms divide a w-bit word conceptually into equal-sized fields and employ full-word constants whose field values depend in simple ways on the field positions. The constants are either simply postulated or computed with ad-hoc methods. We describe a procedure for obtaining constants of the following form in constant time: The ith field, counted either from the right or from the left, contains g(i), where g is a constant-degree polynomial with integer coefficients that, disregarding mild restrictions, can be arbitrary. This general form covers almost all cases known to the author of word-RAM constants used in published algorithms.
AbstractList For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form $$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$ , where $$\sigma _i$$ , $$\ell _i$$ and $$d_i$$ are nonnegative integers and $$0\le d_i<b^w$$ , for $$i=1,\ldots ,k$$ . We study the efficient execution of arithmetic operations on (multiple-precision) integers of small (b, w) cover size on a word RAM with words of wb-ary digits and constant-time multiplication and division. In particular, it is shown that if A is an n-digit integer and B is a nonzero m-digit integer of (b, w) cover size k, then $$\lfloor A/B\rfloor $$ can be computed in $$O(1+{{(k n+m)}/w})$$ time. Our results facilitate a unified description of word-RAM algorithms operating on integers that may occupy a fraction of a word or several words. As an application, we consider the fast generation of integers of a special form for use in word-RAM computation. Many published word-RAM algorithms divide a w-bit word conceptually into equal-sized fields and employ full-word constants whose field values depend in simple ways on the field positions. The constants are either simply postulated or computed with ad-hoc methods. We describe a procedure for obtaining constants of the following form in constant time: The ith field, counted either from the right or from the left, contains g(i), where g is a constant-degree polynomial with integer coefficients that, disregarding mild restrictions, can be arbitrary. This general form covers almost all cases known to the author of word-RAM constants used in published algorithms.
Author Hagerup, Torben
Author_xml – sequence: 1
  givenname: Torben
  surname: Hagerup
  fullname: Hagerup, Torben
  email: hagerup@informatik.uni-augsburg.de
BookMark eNqNkMtOwzAQRQ0URFv6ByzyAwbb4-eyKuUhUYEQiKXlJA4EoiTYKRJ_j9si2KJZjHRnzkhzJmjUdq1H6JSSM0qIOjdKY8BSMsw1ERwTC3QPTSAl28DsozGVlGIAbg7-BkBGaEyAMGwUhyM0NlQbzoimx2gW4xshhAqhU42RWrr4la3WzVD3jcf3wRd1rLs2u6g_69iFmLm2zJ67UOKH-SpbdG0cXDvEE3RYuSb62U-foqfL5ePiGt_eXd0s5re4Z1oPWCmVV1Jo7jjkVSU4GMZcJaTKvTclA1mWToIWvqgAFC-hdIUwaa3gVMsKpojt7sY-1O2LDzbvuvdoKbEbRzY5smDT43arxG4cJYjvoD50H2sfB-s3VOHbIbimeHX94EO0MiliOhHMWDDkv5gQSoNSv9g3IQd4QQ
ContentType Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
DBID FFUUA
DEWEY 004.0151
DOI 10.1007/978-3-662-48054-0_31
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 3662480549
9783662480540
EISSN 1611-3349
Editor Italiano, Giuseppe F
Sannella, Donald T
Pighizzini, Giovanni
Editor_xml – sequence: 1
  fullname: Sannella, Donald T
– sequence: 2
  fullname: Italiano, Giuseppe F
– sequence: 3
  fullname: Pighizzini, Giovanni
EndPage 383
ExternalDocumentID EBC6302280_329_390
EBC5578377_329_390
GroupedDBID 0D6
0DA
AABBV
AAGZE
AAZAK
AAZUS
ABBVZ
ABFTD
ABMNI
ACKNT
ACRRC
AEDXK
AEJLV
AEKFX
AETDV
AEZAY
ALMA_UNASSIGNED_HOLDINGS
APFYR
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
IY-
LDH
SBO
SFQCF
TMQGW
TPJZQ
TSXQS
TWXRB
Z81
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
P2P
RSU
~02
ID FETCH-LOGICAL-p288t-777bf6584a43bff543922af567bee9d236dda6385ecf3374d3dac59439c4186f3
ISBN 3662480530
9783662480533
ISSN 0302-9743
IngestDate Tue Jul 29 20:33:56 EDT 2025
Thu May 29 01:05:20 EDT 2025
Thu May 29 01:02:09 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43QA76.9.M35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p288t-777bf6584a43bff543922af567bee9d236dda6385ecf3374d3dac59439c4186f3
Notes Original Abstract: For integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge 2$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\ge 1$$\end{document}, define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _i$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} are nonnegative integers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le d_i<b^w$$\end{document}, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots ,k$$\end{document}. We study the efficient execution of arithmetic operations on (multiple-precision) integers of small (b, w) cover size on a word RAM with words of wb-ary digits and constant-time multiplication and division. In particular, it is shown that if A is an n-digit integer and B is a nonzero m-digit integer of (b, w) cover size k, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor A/B\rfloor $$\end{document} can be computed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1+{{(k n+m)}/w})$$\end{document} time. Our results facilitate a unified description of word-RAM algorithms operating on integers that may occupy a fraction of a word or several words. As an application, we consider the fast generation of integers of a special form for use in word-RAM computation. Many published word-RAM algorithms divide a w-bit word conceptually into equal-sized fields and employ full-word constants whose field values depend in simple ways on the field positions. The constants are either simply postulated or computed with ad-hoc methods. We describe a procedure for obtaining constants of the following form in constant time: The ith field, counted either from the right or from the left, contains g(i), where g is a constant-degree polynomial with integer coefficients that, disregarding mild restrictions, can be arbitrary. This general form covers almost all cases known to the author of word-RAM constants used in published algorithms.
OCLC 918942081
PQID EBC5578377_329_390
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_662_48054_0_31
proquest_ebookcentralchapters_6302280_329_390
proquest_ebookcentralchapters_5578377_329_390
PublicationCentury 2000
PublicationDate 2015
20150811
PublicationDateYYYYMMDD 2015-01-01
2015-08-11
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin, Heidelberg
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II
PublicationTitle Mathematical Foundations of Computer Science 2015
PublicationYear 2015
Publisher Springer Berlin / Heidelberg
Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin / Heidelberg
– name: Springer Berlin Heidelberg
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001558585
ssj0002792
Score 1.7706201
Snippet For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the...
SourceID springer
proquest
SourceType Publisher
StartPage 372
SubjectTerms Algorithms & data structures
Arithmetic Operation
Binomial Coefficient
Mild Restriction
Nonnegative Integer
Positional Representation
Title Easy Multiple-Precision Divisors and Word-RAM Constants
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5578377&ppg=390
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6302280&ppg=390
http://link.springer.com/10.1007/978-3-662-48054-0_31
Volume 9235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZguSAOlJd4tCgHbiujjR0_cuBQoVZV1a0Q2kJvVhLb3Har3RQJfj0zfmzSbgUql2hlWYntLzuZGfubj5AP3uqZnHUlFXVpadUoSXXLPG2kF5ZZcPA73NGdn8uTi-r0UlwO-p2BXdK3H7vfd_JK_gdVaANckSV7D2S3N4UG-A34whUQhust5_dmmjUpDOWCq7DKgzpSOJqRtRq2f134AIvB2Pxw6-ugS7dYrdvMBUvZ-WbzazpPpwzpl3WS4AHT-BPrdMaKzt8hYqVfD-dB7hNliKNjjnN2m09naVvifNWH0147oxlnGkqBqdNyyDTkTOP0L4W4AilEskojxXdkyjjYXYhcYpOLplZiAUUeC5Ym88mjjE_6EvMocbNj5MfnOiSSvuBpFZ0ZpNM_hAFMyKPDo9Ozb0OuTQg9DouwaGLcXYqjQs5PHnWqAzbMYsS3vOuRNyKTW5vpwUdZ7JEnyFspkFACa_2MPHDL5-RpXvsirf0LohDiYhfiIkNcAMRFhrjYQvySXBwfLT6f0CSfQa-Y1j3ETar16GA2FW-9F-B6MtZ4IVXrXG0Zl9Y2YH6F6zznqrLcNp2ooVtXlVp6_opMlqule00KVWlmS6W9R9n42rZeCKa7yoHDB_Fq_YbQvAgmbPKnk8VdnPLGCPgwcKUMZ7Xh9eyf_SUPdZqG_tO8sga7b0yutg2QGG4AEhMgMQjJ23v1fkceDy_7Ppn062t3AI5m375P79Efvndykg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Foundations+of+Computer+Science+2015&rft.au=Hagerup%2C+Torben&rft.atitle=Easy+Multiple-Precision+Divisors+and+Word-RAM+Constants&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-08-11&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783662480533&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=372&rft.epage=383&rft_id=info:doi/10.1007%2F978-3-662-48054-0_31
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5578377-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6302280-l.jpg