Easy Multiple-Precision Divisors and Word-RAM Constants
For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form $$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$ , where $$\sigma _i$$ , $$\ell _i$$ and $$d_i$$ are nonnegative integers and $$0\le d_i...
Saved in:
| Published in | Mathematical Foundations of Computer Science 2015 Vol. 9235; pp. 372 - 383 |
|---|---|
| Main Author | |
| Format | Book Chapter |
| Language | English |
| Published |
Germany
Springer Berlin / Heidelberg
2015
Springer Berlin Heidelberg |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3662480530 9783662480533 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-662-48054-0_31 |
Cover
| Abstract | For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form $$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$ , where $$\sigma _i$$ , $$\ell _i$$ and $$d_i$$ are nonnegative integers and $$0\le d_i<b^w$$ , for $$i=1,\ldots ,k$$ . We study the efficient execution of arithmetic operations on (multiple-precision) integers of small (b, w) cover size on a word RAM with words of wb-ary digits and constant-time multiplication and division. In particular, it is shown that if A is an n-digit integer and B is a nonzero m-digit integer of (b, w) cover size k, then $$\lfloor A/B\rfloor $$ can be computed in $$O(1+{{(k n+m)}/w})$$ time. Our results facilitate a unified description of word-RAM algorithms operating on integers that may occupy a fraction of a word or several words.
As an application, we consider the fast generation of integers of a special form for use in word-RAM computation. Many published word-RAM algorithms divide a w-bit word conceptually into equal-sized fields and employ full-word constants whose field values depend in simple ways on the field positions. The constants are either simply postulated or computed with ad-hoc methods. We describe a procedure for obtaining constants of the following form in constant time: The ith field, counted either from the right or from the left, contains g(i), where g is a constant-degree polynomial with integer coefficients that, disregarding mild restrictions, can be arbitrary. This general form covers almost all cases known to the author of word-RAM constants used in published algorithms. |
|---|---|
| AbstractList | For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form $$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$ , where $$\sigma _i$$ , $$\ell _i$$ and $$d_i$$ are nonnegative integers and $$0\le d_i<b^w$$ , for $$i=1,\ldots ,k$$ . We study the efficient execution of arithmetic operations on (multiple-precision) integers of small (b, w) cover size on a word RAM with words of wb-ary digits and constant-time multiplication and division. In particular, it is shown that if A is an n-digit integer and B is a nonzero m-digit integer of (b, w) cover size k, then $$\lfloor A/B\rfloor $$ can be computed in $$O(1+{{(k n+m)}/w})$$ time. Our results facilitate a unified description of word-RAM algorithms operating on integers that may occupy a fraction of a word or several words.
As an application, we consider the fast generation of integers of a special form for use in word-RAM computation. Many published word-RAM algorithms divide a w-bit word conceptually into equal-sized fields and employ full-word constants whose field values depend in simple ways on the field positions. The constants are either simply postulated or computed with ad-hoc methods. We describe a procedure for obtaining constants of the following form in constant time: The ith field, counted either from the right or from the left, contains g(i), where g is a constant-degree polynomial with integer coefficients that, disregarding mild restrictions, can be arbitrary. This general form covers almost all cases known to the author of word-RAM constants used in published algorithms. |
| Author | Hagerup, Torben |
| Author_xml | – sequence: 1 givenname: Torben surname: Hagerup fullname: Hagerup, Torben email: hagerup@informatik.uni-augsburg.de |
| BookMark | eNqNkMtOwzAQRQ0URFv6ByzyAwbb4-eyKuUhUYEQiKXlJA4EoiTYKRJ_j9si2KJZjHRnzkhzJmjUdq1H6JSSM0qIOjdKY8BSMsw1ERwTC3QPTSAl28DsozGVlGIAbg7-BkBGaEyAMGwUhyM0NlQbzoimx2gW4xshhAqhU42RWrr4la3WzVD3jcf3wRd1rLs2u6g_69iFmLm2zJ67UOKH-SpbdG0cXDvEE3RYuSb62U-foqfL5ePiGt_eXd0s5re4Z1oPWCmVV1Jo7jjkVSU4GMZcJaTKvTclA1mWToIWvqgAFC-hdIUwaa3gVMsKpojt7sY-1O2LDzbvuvdoKbEbRzY5smDT43arxG4cJYjvoD50H2sfB-s3VOHbIbimeHX94EO0MiliOhHMWDDkv5gQSoNSv9g3IQd4QQ |
| ContentType | Book Chapter |
| Copyright | Springer-Verlag Berlin Heidelberg 2015 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 |
| DBID | FFUUA |
| DEWEY | 004.0151 |
| DOI | 10.1007/978-3-662-48054-0_31 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 3662480549 9783662480540 |
| EISSN | 1611-3349 |
| Editor | Italiano, Giuseppe F Sannella, Donald T Pighizzini, Giovanni |
| Editor_xml | – sequence: 1 fullname: Sannella, Donald T – sequence: 2 fullname: Italiano, Giuseppe F – sequence: 3 fullname: Pighizzini, Giovanni |
| EndPage | 383 |
| ExternalDocumentID | EBC6302280_329_390 EBC5578377_329_390 |
| GroupedDBID | 0D6 0DA AABBV AAGZE AAZAK AAZUS ABBVZ ABFTD ABMNI ACKNT ACRRC AEDXK AEJLV AEKFX AETDV AEZAY ALMA_UNASSIGNED_HOLDINGS APFYR AZZ BBABE CZZ FFUUA I4C IEZ IY- LDH SBO SFQCF TMQGW TPJZQ TSXQS TWXRB Z81 Z83 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS P2P RSU ~02 |
| ID | FETCH-LOGICAL-p288t-777bf6584a43bff543922af567bee9d236dda6385ecf3374d3dac59439c4186f3 |
| ISBN | 3662480530 9783662480533 |
| ISSN | 0302-9743 |
| IngestDate | Tue Jul 29 20:33:56 EDT 2025 Thu May 29 01:05:20 EDT 2025 Thu May 29 01:02:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | QA76.9.A43QA76.9.M35 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p288t-777bf6584a43bff543922af567bee9d236dda6385ecf3374d3dac59439c4186f3 |
| Notes | Original Abstract: For integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge 2$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\ge 1$$\end{document}, define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=\sum _{i=1}^k(-1)^{\sigma _i}b^{\ell _i}d_i$$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _i$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_i$$\end{document} are nonnegative integers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le d_i<b^w$$\end{document}, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots ,k$$\end{document}. We study the efficient execution of arithmetic operations on (multiple-precision) integers of small (b, w) cover size on a word RAM with words of wb-ary digits and constant-time multiplication and division. In particular, it is shown that if A is an n-digit integer and B is a nonzero m-digit integer of (b, w) cover size k, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor A/B\rfloor $$\end{document} can be computed in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1+{{(k n+m)}/w})$$\end{document} time. Our results facilitate a unified description of word-RAM algorithms operating on integers that may occupy a fraction of a word or several words. As an application, we consider the fast generation of integers of a special form for use in word-RAM computation. Many published word-RAM algorithms divide a w-bit word conceptually into equal-sized fields and employ full-word constants whose field values depend in simple ways on the field positions. The constants are either simply postulated or computed with ad-hoc methods. We describe a procedure for obtaining constants of the following form in constant time: The ith field, counted either from the right or from the left, contains g(i), where g is a constant-degree polynomial with integer coefficients that, disregarding mild restrictions, can be arbitrary. This general form covers almost all cases known to the author of word-RAM constants used in published algorithms. |
| OCLC | 918942081 |
| PQID | EBC5578377_329_390 |
| PageCount | 12 |
| ParticipantIDs | springer_books_10_1007_978_3_662_48054_0_31 proquest_ebookcentralchapters_6302280_329_390 proquest_ebookcentralchapters_5578377_329_390 |
| PublicationCentury | 2000 |
| PublicationDate | 2015 20150811 |
| PublicationDateYYYYMMDD | 2015-01-01 2015-08-11 |
| PublicationDate_xml | – year: 2015 text: 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Berlin, Heidelberg |
| PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II |
| PublicationTitle | Mathematical Foundations of Computer Science 2015 |
| PublicationYear | 2015 |
| Publisher | Springer Berlin / Heidelberg Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin / Heidelberg – name: Springer Berlin Heidelberg |
| RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
| RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
| SSID | ssj0001558585 ssj0002792 |
| Score | 1.7706201 |
| Snippet | For integers $$b\ge 2$$ and $$w\ge 1$$ , define the (b, w) cover size of an integer A as the smallest nonnegative integer k such that A can be written in the... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 372 |
| SubjectTerms | Algorithms & data structures Arithmetic Operation Binomial Coefficient Mild Restriction Nonnegative Integer Positional Representation |
| Title | Easy Multiple-Precision Divisors and Word-RAM Constants |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5578377&ppg=390 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6302280&ppg=390 http://link.springer.com/10.1007/978-3-662-48054-0_31 |
| Volume | 9235 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZguSAOlJd4tCgHbiujjR0_cuBQoVZV1a0Q2kJvVhLb3Har3RQJfj0zfmzSbgUql2hlWYntLzuZGfubj5AP3uqZnHUlFXVpadUoSXXLPG2kF5ZZcPA73NGdn8uTi-r0UlwO-p2BXdK3H7vfd_JK_gdVaANckSV7D2S3N4UG-A34whUQhust5_dmmjUpDOWCq7DKgzpSOJqRtRq2f134AIvB2Pxw6-ugS7dYrdvMBUvZ-WbzazpPpwzpl3WS4AHT-BPrdMaKzt8hYqVfD-dB7hNliKNjjnN2m09naVvifNWH0147oxlnGkqBqdNyyDTkTOP0L4W4AilEskojxXdkyjjYXYhcYpOLplZiAUUeC5Ym88mjjE_6EvMocbNj5MfnOiSSvuBpFZ0ZpNM_hAFMyKPDo9Ozb0OuTQg9DouwaGLcXYqjQs5PHnWqAzbMYsS3vOuRNyKTW5vpwUdZ7JEnyFspkFACa_2MPHDL5-RpXvsirf0LohDiYhfiIkNcAMRFhrjYQvySXBwfLT6f0CSfQa-Y1j3ETar16GA2FW-9F-B6MtZ4IVXrXG0Zl9Y2YH6F6zznqrLcNp2ooVtXlVp6_opMlqule00KVWlmS6W9R9n42rZeCKa7yoHDB_Fq_YbQvAgmbPKnk8VdnPLGCPgwcKUMZ7Xh9eyf_SUPdZqG_tO8sga7b0yutg2QGG4AEhMgMQjJ23v1fkceDy_7Ppn062t3AI5m375P79Efvndykg |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Mathematical+Foundations+of+Computer+Science+2015&rft.au=Hagerup%2C+Torben&rft.atitle=Easy+Multiple-Precision+Divisors+and+Word-RAM+Constants&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-08-11&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783662480533&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=372&rft.epage=383&rft_id=info:doi/10.1007%2F978-3-662-48054-0_31 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5578377-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6302280-l.jpg |