Schnorr-Like Identification Scheme Resistant to Malicious Subliminal Setting of Ephemeral Secret

In this paper we propose a modification of the Schnorr IdentificationScheme ( $${\mathsf {IS}}$$ ), which is immune to malicious subliminal setting of ephemeral secret. We introduce a new strong security model in which, during the query stage, we allow the adversary verifier to set random values use...

Full description

Saved in:
Bibliographic Details
Published inInnovative Security Solutions for Information Technology and Communications Vol. 10006; pp. 137 - 148
Main Author Krzywiecki, Łukasz
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319472379
3319472372
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-47238-6_10

Cover

More Information
Summary:In this paper we propose a modification of the Schnorr IdentificationScheme ( $${\mathsf {IS}}$$ ), which is immune to malicious subliminal setting of ephemeral secret. We introduce a new strong security model in which, during the query stage, we allow the adversary verifier to set random values used on the prover side in the commitment phase. We define the $${\mathsf {IS}}$$ scheme to be secure if such a setting will not enable the adversary to impersonate the prover later on. Subsequently we prove the security of the modified Schnorr $${\mathsf {IS}}$$ in our strong model. We assume the proposition is important for scenarios in which we do not control the production process of the device on which the scheme is implemented, and where the erroneous pseudo-random number generators make such attacks possible.
Bibliography:Partially supported by funding from Polish NCN contract number DEC-2013/09/D/ST6/03927.
Original Abstract: In this paper we propose a modification of the Schnorr IdentificationScheme (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {IS}}$$\end{document}), which is immune to malicious subliminal setting of ephemeral secret. We introduce a new strong security model in which, during the query stage, we allow the adversary verifier to set random values used on the prover side in the commitment phase. We define the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {IS}}$$\end{document} scheme to be secure if such a setting will not enable the adversary to impersonate the prover later on. Subsequently we prove the security of the modified Schnorr \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {IS}}$$\end{document} in our strong model. We assume the proposition is important for scenarios in which we do not control the production process of the device on which the scheme is implemented, and where the erroneous pseudo-random number generators make such attacks possible.
ISBN:9783319472379
3319472372
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-47238-6_10