Repairing Binary Images Through the 2D Diamond Grid

A 2D binary image is well-composed if it does not contain a $$2\times 2$$ configuration of two diagonal black and two diagonal white squares. We propose a simple repairing algorithm to construct two well-composed images $$I_4$$ and $$I_8$$ starting from an image I, and we prove that $$I_4$$ and $$I_...

Full description

Saved in:
Bibliographic Details
Published inCombinatorial Image Analysis Vol. 12148; pp. 183 - 198
Main Authors Čomić, Lidija, Magillo, Paola
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783030510015
3030510018
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-51002-2_13

Cover

More Information
Summary:A 2D binary image is well-composed if it does not contain a $$2\times 2$$ configuration of two diagonal black and two diagonal white squares. We propose a simple repairing algorithm to construct two well-composed images $$I_4$$ and $$I_8$$ starting from an image I, and we prove that $$I_4$$ and $$I_8$$ are homotopy equivalent to I with 4- and 8-adjacency, respectively. This is achieved by passing from the original square grid to another one, rotated by $$\pi /4$$ , whose pixels correspond to the original pixels and to their vertices. The images $$I_4$$ and $$I_8$$ are double in size with respect to the image I. Experimental comparisons and applications are also shown.
Bibliography:Original Abstract: A 2D binary image is well-composed if it does not contain a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} configuration of two diagonal black and two diagonal white squares. We propose a simple repairing algorithm to construct two well-composed images \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_4$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_8$$\end{document} starting from an image I, and we prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_4$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_8$$\end{document} are homotopy equivalent to I with 4- and 8-adjacency, respectively. This is achieved by passing from the original square grid to another one, rotated by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /4$$\end{document}, whose pixels correspond to the original pixels and to their vertices. The images \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_4$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_8$$\end{document} are double in size with respect to the image I. Experimental comparisons and applications are also shown.
ISBN:9783030510015
3030510018
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-51002-2_13