Learning and Reasoning with Logic Tensor Networks

The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy set...

Full description

Saved in:
Bibliographic Details
Published inAIIA 2016 Advances in Artificial Intelligence Vol. 10037; pp. 334 - 348
Main Authors Serafini, Luciano, d’Avila Garcez, Artur S.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783319491295
3319491296
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-49130-1_25

Cover

Abstract The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s $$\textsc {TensorFlow}^{\tiny {\text {TM}}}$$ primitives. The paper concludes with experiments on a simple but representative example of knowledge completion.
AbstractList The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s $$\textsc {TensorFlow}^{\tiny {\text {TM}}}$$ primitives. The paper concludes with experiments on a simple but representative example of knowledge completion.
Author d’Avila Garcez, Artur S.
Serafini, Luciano
Author_xml – sequence: 1
  givenname: Luciano
  surname: Serafini
  fullname: Serafini, Luciano
  email: serafini@fbk.eu
– sequence: 2
  givenname: Artur S.
  surname: d’Avila Garcez
  fullname: d’Avila Garcez, Artur S.
BookMark eNqNkMtOwzAQRQ0URFr6ByzyAwaP314ixEuKQEJFYmc5idOWVnGwg_r7pGnFmtVoHmdm7p2iSRtaj9A1kBsgRN0apTHDDAzmBhjBYKk4QVM2VMbC5ynKQAJgxrg5Q_Nh_tijRkxQRhih2CjOLlBmpFJAhOaXaJ7SFyEElATKWYag8C6263aZu7bO371LYcx2636VF2G5rvKFb1OI-avvdyFu0hU6b9w2-fkxztDH48Pi_hkXb08v93cF7qjWPQYtpPONKoFDY4AYWkkvfCllKWtSV1QyKiR3TjRSVboxw2Tja2CKaU05sBmih72pi8NHPtoyhE2yQOzeIDsItswOku3oh90bNED8AHUxfP_41Fu_pyrf9tFtq5Xreh-TlVQLTYmlSlg23voXJoShgvI_7BcHzHaJ
ContentType Book Chapter
Copyright Springer International Publishing AG 2016
Copyright_xml – notice: Springer International Publishing AG 2016
DBID FFUUA
DEWEY 006.3
DOI 10.1007/978-3-319-49130-1_25
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 331949130X
9783319491301
EISSN 1611-3349
Editor Cagnoni, Stefano
Adorni, Giovanni
Gori, Marco
Maratea, Marco
Editor_xml – sequence: 1
  fullname: Cagnoni, Stefano
– sequence: 2
  fullname: Gori, Marco
– sequence: 3
  fullname: Maratea, Marco
– sequence: 4
  fullname: Adorni, Giovanni
EndPage 348
ExternalDocumentID EBC6285820_275_341
EBC5592524_275_341
GroupedDBID 0D6
0DA
38.
AABBV
AAMCO
AAPIT
AAQZU
ABOWU
ACLMJ
ADCXD
ADPGQ
AEDXK
AEJGN
AEKFX
ALMA_UNASSIGNED_HOLDINGS
AORVH
AWFBM
AZZ
BBABE
CZZ
FFUUA
I4C
IEZ
SBO
SWNTM
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-p288t-1856aef7b141f91092c6e5eb66b6d0dc2632564aa5f67c8f97b1fed1373882413
IEDL.DBID SBO
ISBN 9783319491295
3319491296
ISSN 0302-9743
IngestDate Wed Sep 17 04:07:55 EDT 2025
Thu May 29 01:50:01 EDT 2025
Wed May 28 23:23:51 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342TJ210.2-211.
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p288t-1856aef7b141f91092c6e5eb66b6d0dc2632564aa5f67c8f97b1fed1373882413
Notes Original Abstract: The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {TensorFlow}^{\tiny {\text {TM}}}$$\end{document} primitives. The paper concludes with experiments on a simple but representative example of knowledge completion.
The first author acknowledges the Mobility Program of FBK, for supporting a long term visit at City University London. He also acknowledges NVIDIA Corporation for supporting this research with the donation of a GPU. We also thank Prof. Marco Gori and his group at the University of Siena for the generous and inspiring discussions on the topic of integrating logical reasoning and statistical machine learning.
OCLC 967710584
PQID EBC5592524_275_341
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_319_49130_1_25
proquest_ebookcentralchapters_6285820_275_341
proquest_ebookcentralchapters_5592524_275_341
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle XVth International Conference of the Italian Association for Artificial Intelligence, Genova, Italy, November 29 - December 1, 2016, Proceedings
PublicationTitle AIIA 2016 Advances in Artificial Intelligence
PublicationYear 2016
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001761243
ssj0002792
Score 2.3505065
Snippet The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic...
SourceID springer
proquest
SourceType Publisher
StartPage 334
SubjectTerms Artificial intelligence
Data-driven knowledge completion
Knowledge representation
Neural-symbolic computation
Relational learning
Tensor networks
Title Learning and Reasoning with Logic Tensor Networks
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5592524&ppg=341
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6285820&ppg=341
http://link.springer.com/10.1007/978-3-319-49130-1_25
Volume 10037
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61XtRDtSq-ycGbpHSzSXZzVSxFsIK22FtIsokHYZV2e_HXO9mHrUWQHheGhAzLvL9vELqmTPjgKInUmSEslZoYZhgRkKvYmMqkwlY9jsRwwh6mfNpCosHClNPuTUuytNQN2K3q4wfMDZNgeEmkKN9C23EiZdhc8HL7tKytQG5O2dIiB5K8qptACcTPYbdDDAfBObTi9kvSn2--gq_768pfkeha87T0SYMOem1eU42ivPcWhenZrzWix82fu4_2AgICB2gCaP0AtVzeRZ1m_wOuzUEX7a6QGR6iqKZqfcM6z_Cz0_Oy0otDpReHlc4WjyFn_pjhUTV6Pj9Ck8H9-G5I6oUM5JOmaUHAtwvtfGIiFnmIMyS1wnFnhDAi62c2cL9zwbTmXiQ29RIkvcuiwJ6UhgbeMWrnH7k7QdhYLa2E3Nx7zgSlMhOZ9H1t-0niuM5OEWnUrMq2cT2raqunzxVkQpRTpmjCFXjif-UDVBSinaX8TaN2FcTnquFvBsWrWIHiVal4FRR_tpH0OdqBsKou1FygdjFbuEsIXQpzVf6n3y2A2rc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qHnwcqlXxbQ7eJNJNk-zmqljqq4K26C0k2cSDUMXWi7_eyT5sFUE8LgwJGZZ5f98AHDEuQ3SUVJncUp4pQy23nErMVVyHqbTEVt30ZW_ILx_FYwNkjYUppt3rlmRhqWuwW9nHj5gbrtDw0kQzMQcLHH1QHOW7P72d1lYwN2d8apEjSV7ZTWAU4-e426GDB-E5rOT2S7OvbzGDr_vtym-R6I_maeGTuk14qF9TjqI8n7xP7In7-EH0-P_nrsJKRECQCE1Ara9Bw49a0Kz3P5DKHLRgeYbMcB2Siqr1iZhRTu68GReVXhIrvSSudHZkgDnzyxvpl6Pn4w0Yds8HZz1aLWSgryzLJhR9uzQ-pDbhScA4QzEnvfBWSivzdu4i97uQ3BgRZOqyoFAy-DyJ7ElZbOBtwvzoZeS3gFhnlFOYm4cguGRM5TJXoW1cO029MPk20FrNumgbV7Oqrnz6WGMmxATjmqVCoyf-Uz5CRTHamcof12rXUXysa_5mVLzuaFS8LhSvo-J3_iV9CIu9wc21vr7oX-3CEoZYVdFmD-Ynb-9-H8OYiT0o_tlPa7vdlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aQdSDO-7m4E2inTTJTK4uxbWKC3gLWT0IU7HTi7_el1lsFUHE48AjQ15C3vp9D6E9ykSIhpJI7QxhmdTEMMOIgFjFdqhMK2zVdU-cPbKLJ_40hoUpu92bkmSFaYgsTXlx-OpCU9U_rGr6EX_DJDzCJFGUT6IpliRpvOX3RzejPAvE6ZSNXudImFdVFigBXzrOeejAQrAOrXj-0uzzm49h7X765Rev9FshtbRP3Xlkm51VbSkvB8PCHNj3b6SP_9v6ApqLyAgcIQtwGotowudLaL6ZC4HrZ2IJzY6RHC6jpKZwfcY6d_jO60GZAcYxA4zjqGeLHyCW7r_hXtWSPlhBj93Th-MzUg9qIK80ywoCNl9oH1KTsCSA_yGpFZ57I4QRru1s5ITngmnNg0htFiRIBu-SyKqUxcLeKmrl_dyvIWysllZCzB4CZ4JS6YSToa1tO009124dkUblqiwn1z2sttr6QEGERDlliqZcgYX-VT5CSMELGsnvN0egovhANbzOoHjVUaB4VSpeRcVv_El6F03fnnTV1XnvchPNgOdV53K2UKt4G_pt8G4Ks1Ne3w_eFuZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=AIIA+2016+Advances+in+Artificial+Intelligence&rft.au=Serafini%2C+Luciano&rft.au=d%E2%80%99Avila+Garcez%2C+Artur+S.&rft.atitle=Learning+and+Reasoning+with+Logic+Tensor+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2016-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319491295&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=334&rft.epage=348&rft_id=info:doi/10.1007%2F978-3-319-49130-1_25
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5592524-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6285820-l.jpg