Learning and Reasoning with Logic Tensor Networks
The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy set...
Saved in:
Published in | AIIA 2016 Advances in Artificial Intelligence Vol. 10037; pp. 334 - 348 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783319491295 3319491296 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-319-49130-1_25 |
Cover
Abstract | The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s $$\textsc {TensorFlow}^{\tiny {\text {TM}}}$$ primitives. The paper concludes with experiments on a simple but representative example of knowledge completion. |
---|---|
AbstractList | The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s $$\textsc {TensorFlow}^{\tiny {\text {TM}}}$$ primitives. The paper concludes with experiments on a simple but representative example of knowledge completion. |
Author | d’Avila Garcez, Artur S. Serafini, Luciano |
Author_xml | – sequence: 1 givenname: Luciano surname: Serafini fullname: Serafini, Luciano email: serafini@fbk.eu – sequence: 2 givenname: Artur S. surname: d’Avila Garcez fullname: d’Avila Garcez, Artur S. |
BookMark | eNqNkMtOwzAQRQ0URFr6ByzyAwaP314ixEuKQEJFYmc5idOWVnGwg_r7pGnFmtVoHmdm7p2iSRtaj9A1kBsgRN0apTHDDAzmBhjBYKk4QVM2VMbC5ynKQAJgxrg5Q_Nh_tijRkxQRhih2CjOLlBmpFJAhOaXaJ7SFyEElATKWYag8C6263aZu7bO371LYcx2636VF2G5rvKFb1OI-avvdyFu0hU6b9w2-fkxztDH48Pi_hkXb08v93cF7qjWPQYtpPONKoFDY4AYWkkvfCllKWtSV1QyKiR3TjRSVboxw2Tja2CKaU05sBmih72pi8NHPtoyhE2yQOzeIDsItswOku3oh90bNED8AHUxfP_41Fu_pyrf9tFtq5Xreh-TlVQLTYmlSlg23voXJoShgvI_7BcHzHaJ |
ContentType | Book Chapter |
Copyright | Springer International Publishing AG 2016 |
Copyright_xml | – notice: Springer International Publishing AG 2016 |
DBID | FFUUA |
DEWEY | 006.3 |
DOI | 10.1007/978-3-319-49130-1_25 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 331949130X 9783319491301 |
EISSN | 1611-3349 |
Editor | Cagnoni, Stefano Adorni, Giovanni Gori, Marco Maratea, Marco |
Editor_xml | – sequence: 1 fullname: Cagnoni, Stefano – sequence: 2 fullname: Gori, Marco – sequence: 3 fullname: Maratea, Marco – sequence: 4 fullname: Adorni, Giovanni |
EndPage | 348 |
ExternalDocumentID | EBC6285820_275_341 EBC5592524_275_341 |
GroupedDBID | 0D6 0DA 38. AABBV AAMCO AAPIT AAQZU ABOWU ACLMJ ADCXD ADPGQ AEDXK AEJGN AEKFX ALMA_UNASSIGNED_HOLDINGS AORVH AWFBM AZZ BBABE CZZ FFUUA I4C IEZ SBO SWNTM TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-p288t-1856aef7b141f91092c6e5eb66b6d0dc2632564aa5f67c8f97b1fed1373882413 |
IEDL.DBID | SBO |
ISBN | 9783319491295 3319491296 |
ISSN | 0302-9743 |
IngestDate | Wed Sep 17 04:07:55 EDT 2025 Thu May 29 01:50:01 EDT 2025 Wed May 28 23:23:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342TJ210.2-211. |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p288t-1856aef7b141f91092c6e5eb66b6d0dc2632564aa5f67c8f97b1fed1373882413 |
Notes | Original Abstract: The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic is based on full first order language. Terms are interpreted in n-dimensional feature vectors, while predicates are interpreted in fuzzy sets. In real logic it is possible to formally define the following two tasks: (i) learning from data in presence of logical constraints, and (ii) reasoning on formulas exploiting concrete data. We implement real logic in an deep learning architecture, called logic tensor networks, based on Google’s \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {TensorFlow}^{\tiny {\text {TM}}}$$\end{document} primitives. The paper concludes with experiments on a simple but representative example of knowledge completion. The first author acknowledges the Mobility Program of FBK, for supporting a long term visit at City University London. He also acknowledges NVIDIA Corporation for supporting this research with the donation of a GPU. We also thank Prof. Marco Gori and his group at the University of Siena for the generous and inspiring discussions on the topic of integrating logical reasoning and statistical machine learning. |
OCLC | 967710584 |
PQID | EBC5592524_275_341 |
PageCount | 15 |
ParticipantIDs | springer_books_10_1007_978_3_319_49130_1_25 proquest_ebookcentralchapters_6285820_275_341 proquest_ebookcentralchapters_5592524_275_341 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | XVth International Conference of the Italian Association for Artificial Intelligence, Genova, Italy, November 29 - December 1, 2016, Proceedings |
PublicationTitle | AIIA 2016 Advances in Artificial Intelligence |
PublicationYear | 2016 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard |
SSID | ssj0001761243 ssj0002792 |
Score | 2.3505065 |
Snippet | The paper introduces real logic: a framework that seamlessly integrates logical deductive reasoning with efficient, data-driven relational learning. Real logic... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 334 |
SubjectTerms | Artificial intelligence Data-driven knowledge completion Knowledge representation Neural-symbolic computation Relational learning Tensor networks |
Title | Learning and Reasoning with Logic Tensor Networks |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5592524&ppg=341 http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6285820&ppg=341 http://link.springer.com/10.1007/978-3-319-49130-1_25 |
Volume | 10037 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61XtRDtSq-ycGbpHSzSXZzVSxFsIK22FtIsokHYZV2e_HXO9mHrUWQHheGhAzLvL9vELqmTPjgKInUmSEslZoYZhgRkKvYmMqkwlY9jsRwwh6mfNpCosHClNPuTUuytNQN2K3q4wfMDZNgeEmkKN9C23EiZdhc8HL7tKytQG5O2dIiB5K8qptACcTPYbdDDAfBObTi9kvSn2--gq_768pfkeha87T0SYMOem1eU42ivPcWhenZrzWix82fu4_2AgICB2gCaP0AtVzeRZ1m_wOuzUEX7a6QGR6iqKZqfcM6z_Cz0_Oy0otDpReHlc4WjyFn_pjhUTV6Pj9Ck8H9-G5I6oUM5JOmaUHAtwvtfGIiFnmIMyS1wnFnhDAi62c2cL9zwbTmXiQ29RIkvcuiwJ6UhgbeMWrnH7k7QdhYLa2E3Nx7zgSlMhOZ9H1t-0niuM5OEWnUrMq2cT2raqunzxVkQpRTpmjCFXjif-UDVBSinaX8TaN2FcTnquFvBsWrWIHiVal4FRR_tpH0OdqBsKou1FygdjFbuEsIXQpzVf6n3y2A2rc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qHnwcqlXxbQ7eJNJNk-zmqljqq4K26C0k2cSDUMXWi7_eyT5sFUE8LgwJGZZ5f98AHDEuQ3SUVJncUp4pQy23nErMVVyHqbTEVt30ZW_ILx_FYwNkjYUppt3rlmRhqWuwW9nHj5gbrtDw0kQzMQcLHH1QHOW7P72d1lYwN2d8apEjSV7ZTWAU4-e426GDB-E5rOT2S7OvbzGDr_vtym-R6I_maeGTuk14qF9TjqI8n7xP7In7-EH0-P_nrsJKRECQCE1Ara9Bw49a0Kz3P5DKHLRgeYbMcB2Siqr1iZhRTu68GReVXhIrvSSudHZkgDnzyxvpl6Pn4w0Yds8HZz1aLWSgryzLJhR9uzQ-pDbhScA4QzEnvfBWSivzdu4i97uQ3BgRZOqyoFAy-DyJ7ElZbOBtwvzoZeS3gFhnlFOYm4cguGRM5TJXoW1cO029MPk20FrNumgbV7Oqrnz6WGMmxATjmqVCoyf-Uz5CRTHamcof12rXUXysa_5mVLzuaFS8LhSvo-J3_iV9CIu9wc21vr7oX-3CEoZYVdFmD-Ynb-9-H8OYiT0o_tlPa7vdlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA5aQdSDO-7m4E2inTTJTK4uxbWKC3gLWT0IU7HTi7_el1lsFUHE48AjQ15C3vp9D6E9ykSIhpJI7QxhmdTEMMOIgFjFdqhMK2zVdU-cPbKLJ_40hoUpu92bkmSFaYgsTXlx-OpCU9U_rGr6EX_DJDzCJFGUT6IpliRpvOX3RzejPAvE6ZSNXudImFdVFigBXzrOeejAQrAOrXj-0uzzm49h7X765Rev9FshtbRP3Xlkm51VbSkvB8PCHNj3b6SP_9v6ApqLyAgcIQtwGotowudLaL6ZC4HrZ2IJzY6RHC6jpKZwfcY6d_jO60GZAcYxA4zjqGeLHyCW7r_hXtWSPlhBj93Th-MzUg9qIK80ywoCNl9oH1KTsCSA_yGpFZ57I4QRru1s5ITngmnNg0htFiRIBu-SyKqUxcLeKmrl_dyvIWysllZCzB4CZ4JS6YSToa1tO009124dkUblqiwn1z2sttr6QEGERDlliqZcgYX-VT5CSMELGsnvN0egovhANbzOoHjVUaB4VSpeRcVv_El6F03fnnTV1XnvchPNgOdV53K2UKt4G_pt8G4Ks1Ne3w_eFuZ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=AIIA+2016+Advances+in+Artificial+Intelligence&rft.au=Serafini%2C+Luciano&rft.au=d%E2%80%99Avila+Garcez%2C+Artur+S.&rft.atitle=Learning+and+Reasoning+with+Logic+Tensor+Networks&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2016-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319491295&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=334&rft.epage=348&rft_id=info:doi/10.1007%2F978-3-319-49130-1_25 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5592524-l.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6285820-l.jpg |