An STL-Based Formulation of Resilience in Cyber-Physical Systems
Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-bas...
Saved in:
| Published in | Formal Modeling and Analysis of Timed Systems Vol. 13465; pp. 117 - 135 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Online Access | Get full text |
| ISBN | 9783031158384 3031158385 |
| ISSN | 0302-9743 1611-3349 1611-3349 |
| DOI | 10.1007/978-3-031-15839-1_7 |
Cover
| Abstract | Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ $$\varphi $$ , time bounds α $$\alpha $$ and β $$\beta $$ , the SRS of φ $$\varphi $$ , Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ , is the STL formula ¬φU[0,α]G[0,β)φ $$\lnot \varphi \textbf{U}_{[0,\alpha ]}\textbf{G}_{[0,\beta )}\varphi $$ , specifying that recovery from a violation of φ $$\varphi $$ occur within time α $$\alpha $$ (recoverability), and subsequently that φ $$\varphi $$ be maintained for duration β $$\beta $$ (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach. |
|---|---|
| AbstractList | Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ $$\varphi $$ , time bounds α $$\alpha $$ and β $$\beta $$ , the SRS of φ $$\varphi $$ , Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ , is the STL formula ¬φU[0,α]G[0,β)φ $$\lnot \varphi \textbf{U}_{[0,\alpha ]}\textbf{G}_{[0,\beta )}\varphi $$ , specifying that recovery from a violation of φ $$\varphi $$ occur within time α $$\alpha $$ (recoverability), and subsequently that φ $$\varphi $$ be maintained for duration β $$\beta $$ (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach. |
| Author | Chen, Hongkai Smolka, Scott A. Lin, Shan Paoletti, Nicola |
| Author_xml | – sequence: 1 givenname: Hongkai orcidid: 0000-0001-7206-6584 surname: Chen fullname: Chen, Hongkai email: hongkai.chen@stonybrook.edu – sequence: 2 givenname: Shan orcidid: 0000-0001-6362-2972 surname: Lin fullname: Lin, Shan – sequence: 3 givenname: Scott A. surname: Smolka fullname: Smolka, Scott A. – sequence: 4 givenname: Nicola orcidid: 0000-0002-4723-5363 surname: Paoletti fullname: Paoletti, Nicola |
| BookMark | eNqFkMtO5DAQRc1TdEN_wWzyAwaXy4nt3TAtXlJLIB5ry0kqEEg7IU4L5e8JNJtZsSrp3ntqceZsP7SBGPsD4hSE0GdWG45cIHBIDVoOTu-wxZTilH1HsMtmkAFwRGX3_uuM2mczgUJyqxUesjmgklOtVHrEFjG-CiGkRjBZOmN_z0Py8Lji_3ykMrls-_Wm8UPdhqStknuKdVNTKCipQ7Icc-r53csY68I3ycMYB1rHE3ZQ-SbS4uces6fLi8flNV_dXt0sz1e8kyYbuJR5nqUkqspkVpjKkvVIWJJEELkqKQdDHquMbIqaCl0RFlCWeVFpI0yOx0xt_25C58cP3zSu6-u170cHwn1Zc5MDh26y4L4VucnahMEWi9M6PFPv8rZ9i78wuGW6vn3fUBwcfUEFhaH3TfHiu4H66LTQRirhrHEgLX4CGm97Wg |
| ContentType | Book Chapter |
| Copyright | Springer Nature Switzerland AG 2022 |
| Copyright_xml | – notice: Springer Nature Switzerland AG 2022 |
| DBID | FFUUA ABOKW UNPAY |
| DEWEY | 004.0151 |
| DOI | 10.1007/978-3-031-15839-1_7 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783031158391 3031158393 |
| EISSN | 1611-3349 |
| Editor | Bogomolov, Sergiy Parker, David |
| Editor_xml | – sequence: 1 fullname: Parker, David – sequence: 2 fullname: Bogomolov, Sergiy |
| EndPage | 135 |
| ExternalDocumentID | oai:kclpure.kcl.ac.uk:publications/60b715a0-23c8-420a-bef2-25c98a374c37 EBC7078240_98_129 |
| GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR AIYYB ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z7R Z7U Z7X Z7Z Z81 Z83 Z84 Z85 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG VI1 ~02 ABOKW UNPAY |
| ID | FETCH-LOGICAL-p286t-22bb65e0ff86908f9e9a3e3de2310b4deb18ea3f6e9537ec7fe3c1ddbcf7808b3 |
| IEDL.DBID | UNPAY |
| ISBN | 9783031158384 3031158385 |
| ISSN | 0302-9743 1611-3349 |
| IngestDate | Sun Oct 26 04:02:08 EDT 2025 Wed Sep 17 04:51:46 EDT 2025 Thu May 29 16:22:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | QA75.5-76.95 |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-p286t-22bb65e0ff86908f9e9a3e3de2310b4deb18ea3f6e9537ec7fe3c1ddbcf7808b3 |
| Notes | Original Abstract: Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, time bounds α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the SRS of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, Rα,β(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha ,\beta }(\varphi )$$\end{document}, is the STL formula ¬φU[0,α]G[0,β)φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lnot \varphi \textbf{U}_{[0,\alpha ]}\textbf{G}_{[0,\beta )}\varphi $$\end{document}, specifying that recovery from a violation of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} occur within time α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} (recoverability), and subsequently that φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be maintained for duration β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha ,\beta }(\varphi )$$\end{document} atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach. |
| OCLC | 1342783445 |
| ORCID | 0000-0002-4723-5363 0000-0001-6362-2972 0000-0001-7206-6584 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.scopus.com/inward/record.url?scp=85137974860&partnerID=8YFLogxK |
| PQID | EBC7078240_98_129 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1007_978_3_031_15839_1_7 springer_books_10_1007_978_3_031_15839_1_7 proquest_ebookcentralchapters_7078240_98_129 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 20th International Conference, FORMATS 2022, Warsaw, Poland, September 13-15, 2022, Proceedings |
| PublicationTitle | Formal Modeling and Analysis of Timed Systems |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
| SSID | ssj0002731865 ssj0002792 |
| Score | 2.0931463 |
| Snippet | Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance... |
| SourceID | unpaywall springer proquest |
| SourceType | Open Access Repository Publisher |
| StartPage | 117 |
| Title | An STL-Based Formulation of Resilience in Cyber-Physical Systems |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7078240&ppg=129 http://link.springer.com/10.1007/978-3-031-15839-1_7 http://www.scopus.com/inward/record.url?scp=85137974860&partnerID=8YFLogxK |
| UnpaywallVersion | submittedVersion |
| Volume | 13465 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a3UNpDvloSze0wYfQQ4kW25Jt6VDKJmQJ6TaENFuSk7AsuSxZvGZ3TZL-mvyW_LKObHmTECgUep-L9EYzD83MG4BdpoIg16EmYcgjwlRiSGrfY5JpJOQJpph6fOz7SXw0ZscX0cVD_5PtqrTjGFUTpSeFbR11_xX9aj79usjKL0gSaII8mMf-pxIvuDBzjGr8cjia_br59hK6cYS8vAPd8cnp4LIpI4REuG772Or2USZWEkSNyiwl6N4kiJAwkEAmTwjnqkb6Gl5VRZneXqfT6aM0NFyHq3aYp-k-uepXS9XPfj_XdvwPJ9yANTsI4dkJBbz8TXhhii1Yb9dAeC4qvIH9QeH9OB-RfUyI2hsiCXYrwbxZfn93ZhaTaW3pTYr7u4NbZebk1HmH5wTT38J4eHh-cETcagZShjxeIrJKxZHx89xutOK5MCKlhmpj6aJiGjMANynNYyMimpgsyQ3NAq1Vlifc54q-g04xK8x78JTGh68YFyzQLGa2MJspwX0tIqM14z3Ya5GQdQHZda1mzekXstb8Y74UXCJ56cHnFi1prReyFWZGlCWViLKsUZaIcg_ICk9ZNvIef7Pf_kf7D9BZzivzEXnLUu1Ad3B4PPq54xzzD7TJ7ZM |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB7q-SD6oG0VT6zkQXyQ7pFkN8nug4hKD_EX0nqgT0s2u5HDIxfuLrT61_i3-Jd1NtlcW4SC4Pu87H6zMx87M98A7DIVBLkONQlDHhGmEkNS-x6TTCMhTzDF1ONjl1fx6YCd3Ua3f_qfbFelHceomig9LGzrqPuv6FWT0eE0Kw-QJNAEeTCP_b0SL7gwE4xq_K5_Mb7_db4Ai3GEvLwDi4Or66O7powQEuG67WOr20eZmEsQNSqzlKB7kyBCwkACmfxDOOc10mVYqooyffyZjkZ_paH-Kjy0wzxN98lDr5qpXvb0WtvxHU64Bit2EMKzEwp4-R_hgyk-wWq7BsJzUeEzHB8V3o-bC3KMCVF7fSTBbiWYN85fnr-b6XBUW3rD4uX55FGZCbl23uE5wfR1GPS_3ZycEreagZQhj2eIrFJxZPw8txuteC6MSKmh2li6qJjGDMBNSvPYiIgmJktyQ7NAa5XlCfe5ohvQKcaF2QRPaXz4inHBAs1iZguzmRLc1yIyWjPeha8tErIuILuu1aw5_VTWmn_Ml4JLJC9d2G_RktZ6KlthZkRZUokoyxpliSh3gczxlGUj7_E_-6032m9DZzapzBfkLTO14xzyN1AV6_4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Formal+Modeling+and+Analysis+of+Timed+Systems&rft.au=Chen%2C+Hongkai&rft.au=Lin%2C+Shan&rft.au=Smolka%2C+Scott+A.&rft.au=Paoletti%2C+Nicola&rft.atitle=An+STL-Based+Formulation+of%C2%A0Resilience+in%C2%A0Cyber-Physical+Systems&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783031158384&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=117&rft.epage=135&rft_id=info:doi/10.1007%2F978-3-031-15839-1_7 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7078240-l.jpg |