An STL-Based Formulation of Resilience in Cyber-Physical Systems

Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-bas...

Full description

Saved in:
Bibliographic Details
Published inFormal Modeling and Analysis of Timed Systems Vol. 13465; pp. 117 - 135
Main Authors Chen, Hongkai, Lin, Shan, Smolka, Scott A., Paoletti, Nicola
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN9783031158384
3031158385
ISSN0302-9743
1611-3349
1611-3349
DOI10.1007/978-3-031-15839-1_7

Cover

Abstract Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ $$\varphi $$ , time bounds α $$\alpha $$ and β $$\beta $$ , the SRS of φ $$\varphi $$ , Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ , is the STL formula ¬φU[0,α]G[0,β)φ $$\lnot \varphi \textbf{U}_{[0,\alpha ]}\textbf{G}_{[0,\beta )}\varphi $$ , specifying that recovery from a violation of φ $$\varphi $$ occur within time α $$\alpha $$  (recoverability), and subsequently that φ $$\varphi $$ be maintained for duration β $$\beta $$  (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach.
AbstractList Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ $$\varphi $$ , time bounds α $$\alpha $$ and β $$\beta $$ , the SRS of φ $$\varphi $$ , Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ , is the STL formula ¬φU[0,α]G[0,β)φ $$\lnot \varphi \textbf{U}_{[0,\alpha ]}\textbf{G}_{[0,\beta )}\varphi $$ , specifying that recovery from a violation of φ $$\varphi $$ occur within time α $$\alpha $$  (recoverability), and subsequently that φ $$\varphi $$ be maintained for duration β $$\beta $$  (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β(φ) $$R_{\alpha ,\beta }(\varphi )$$ atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach.
Author Chen, Hongkai
Smolka, Scott A.
Lin, Shan
Paoletti, Nicola
Author_xml – sequence: 1
  givenname: Hongkai
  orcidid: 0000-0001-7206-6584
  surname: Chen
  fullname: Chen, Hongkai
  email: hongkai.chen@stonybrook.edu
– sequence: 2
  givenname: Shan
  orcidid: 0000-0001-6362-2972
  surname: Lin
  fullname: Lin, Shan
– sequence: 3
  givenname: Scott A.
  surname: Smolka
  fullname: Smolka, Scott A.
– sequence: 4
  givenname: Nicola
  orcidid: 0000-0002-4723-5363
  surname: Paoletti
  fullname: Paoletti, Nicola
BookMark eNqFkMtO5DAQRc1TdEN_wWzyAwaXy4nt3TAtXlJLIB5ry0kqEEg7IU4L5e8JNJtZsSrp3ntqceZsP7SBGPsD4hSE0GdWG45cIHBIDVoOTu-wxZTilH1HsMtmkAFwRGX3_uuM2mczgUJyqxUesjmgklOtVHrEFjG-CiGkRjBZOmN_z0Py8Lji_3ykMrls-_Wm8UPdhqStknuKdVNTKCipQ7Icc-r53csY68I3ycMYB1rHE3ZQ-SbS4uces6fLi8flNV_dXt0sz1e8kyYbuJR5nqUkqspkVpjKkvVIWJJEELkqKQdDHquMbIqaCl0RFlCWeVFpI0yOx0xt_25C58cP3zSu6-u170cHwn1Zc5MDh26y4L4VucnahMEWi9M6PFPv8rZ9i78wuGW6vn3fUBwcfUEFhaH3TfHiu4H66LTQRirhrHEgLX4CGm97Wg
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2022
Copyright_xml – notice: Springer Nature Switzerland AG 2022
DBID FFUUA
ABOKW
UNPAY
DEWEY 004.0151
DOI 10.1007/978-3-031-15839-1_7
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783031158391
3031158393
EISSN 1611-3349
Editor Bogomolov, Sergiy
Parker, David
Editor_xml – sequence: 1
  fullname: Parker, David
– sequence: 2
  fullname: Bogomolov, Sergiy
EndPage 135
ExternalDocumentID oai:kclpure.kcl.ac.uk:publications/60b715a0-23c8-420a-bef2-25c98a374c37
EBC7078240_98_129
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
VI1
~02
ABOKW
UNPAY
ID FETCH-LOGICAL-p286t-22bb65e0ff86908f9e9a3e3de2310b4deb18ea3f6e9537ec7fe3c1ddbcf7808b3
IEDL.DBID UNPAY
ISBN 9783031158384
3031158385
ISSN 0302-9743
1611-3349
IngestDate Sun Oct 26 04:02:08 EDT 2025
Wed Sep 17 04:51:46 EDT 2025
Thu May 29 16:22:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
LCCallNum QA75.5-76.95
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p286t-22bb65e0ff86908f9e9a3e3de2310b4deb18ea3f6e9537ec7fe3c1ddbcf7808b3
Notes Original Abstract: Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, time bounds α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the SRS of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}, Rα,β(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha ,\beta }(\varphi )$$\end{document}, is the STL formula ¬φU[0,α]G[0,β)φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lnot \varphi \textbf{U}_{[0,\alpha ]}\textbf{G}_{[0,\beta )}\varphi $$\end{document}, specifying that recovery from a violation of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} occur within time α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} (recoverability), and subsequently that φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be maintained for duration β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} (durability). These R-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function r and prove its soundness and completeness w.r.t. STL’s Boolean semantics. The r-value for Rα,β(φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\alpha ,\beta }(\varphi )$$\end{document} atoms is a singleton set containing a pair quantifying recoverability and durability. The r-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach.
OCLC 1342783445
ORCID 0000-0002-4723-5363
0000-0001-6362-2972
0000-0001-7206-6584
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.scopus.com/inward/record.url?scp=85137974860&partnerID=8YFLogxK
PQID EBC7078240_98_129
PageCount 19
ParticipantIDs unpaywall_primary_10_1007_978_3_031_15839_1_7
springer_books_10_1007_978_3_031_15839_1_7
proquest_ebookcentralchapters_7078240_98_129
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 20th International Conference, FORMATS 2022, Warsaw, Poland, September 13-15, 2022, Proceedings
PublicationTitle Formal Modeling and Analysis of Timed Systems
PublicationYear 2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731865
ssj0002792
Score 2.0931463
Snippet Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance...
SourceID unpaywall
springer
proquest
SourceType Open Access Repository
Publisher
StartPage 117
Title An STL-Based Formulation of Resilience in Cyber-Physical Systems
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7078240&ppg=129
http://link.springer.com/10.1007/978-3-031-15839-1_7
http://www.scopus.com/inward/record.url?scp=85137974860&partnerID=8YFLogxK
UnpaywallVersion submittedVersion
Volume 13465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3a3UNpDvloSze0wYfQQ4kW25Jt6VDKJmQJ6TaENFuSk7AsuSxZvGZ3TZL-mvyW_LKObHmTECgUep-L9EYzD83MG4BdpoIg16EmYcgjwlRiSGrfY5JpJOQJpph6fOz7SXw0ZscX0cVD_5PtqrTjGFUTpSeFbR11_xX9aj79usjKL0gSaII8mMf-pxIvuDBzjGr8cjia_br59hK6cYS8vAPd8cnp4LIpI4REuG772Or2USZWEkSNyiwl6N4kiJAwkEAmTwjnqkb6Gl5VRZneXqfT6aM0NFyHq3aYp-k-uepXS9XPfj_XdvwPJ9yANTsI4dkJBbz8TXhhii1Yb9dAeC4qvIH9QeH9OB-RfUyI2hsiCXYrwbxZfn93ZhaTaW3pTYr7u4NbZebk1HmH5wTT38J4eHh-cETcagZShjxeIrJKxZHx89xutOK5MCKlhmpj6aJiGjMANynNYyMimpgsyQ3NAq1Vlifc54q-g04xK8x78JTGh68YFyzQLGa2MJspwX0tIqM14z3Ya5GQdQHZda1mzekXstb8Y74UXCJ56cHnFi1prReyFWZGlCWViLKsUZaIcg_ICk9ZNvIef7Pf_kf7D9BZzivzEXnLUu1Ad3B4PPq54xzzD7TJ7ZM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS9xAEB7q-SD6oG0VT6zkQXyQ7pFkN8nug4hKD_EX0nqgT0s2u5HDIxfuLrT61_i3-Jd1NtlcW4SC4Pu87H6zMx87M98A7DIVBLkONQlDHhGmEkNS-x6TTCMhTzDF1ONjl1fx6YCd3Ua3f_qfbFelHceomig9LGzrqPuv6FWT0eE0Kw-QJNAEeTCP_b0SL7gwE4xq_K5_Mb7_db4Ai3GEvLwDi4Or66O7powQEuG67WOr20eZmEsQNSqzlKB7kyBCwkACmfxDOOc10mVYqooyffyZjkZ_paH-Kjy0wzxN98lDr5qpXvb0WtvxHU64Bit2EMKzEwp4-R_hgyk-wWq7BsJzUeEzHB8V3o-bC3KMCVF7fSTBbiWYN85fnr-b6XBUW3rD4uX55FGZCbl23uE5wfR1GPS_3ZycEreagZQhj2eIrFJxZPw8txuteC6MSKmh2li6qJjGDMBNSvPYiIgmJktyQ7NAa5XlCfe5ohvQKcaF2QRPaXz4inHBAs1iZguzmRLc1yIyWjPeha8tErIuILuu1aw5_VTWmn_Ml4JLJC9d2G_RktZ6KlthZkRZUokoyxpliSh3gczxlGUj7_E_-6032m9DZzapzBfkLTO14xzyN1AV6_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Formal+Modeling+and+Analysis+of+Timed+Systems&rft.au=Chen%2C+Hongkai&rft.au=Lin%2C+Shan&rft.au=Smolka%2C+Scott+A.&rft.au=Paoletti%2C+Nicola&rft.atitle=An+STL-Based+Formulation+of%C2%A0Resilience+in%C2%A0Cyber-Physical+Systems&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783031158384&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=117&rft.epage=135&rft_id=info:doi/10.1007%2F978-3-031-15839-1_7
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7078240-l.jpg