Optimizing Weights in Elman Recurrent Neural Networks with Wolf Search Algorithm

This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; th...

Full description

Saved in:
Bibliographic Details
Published inAdvances in intelligent systems and computing Vol. 549; pp. 11 - 20
Main Authors Nawi, Nazri Mohd, Rehman, M. Z., Hamid, Norhamreeza Abdul, Khan, Abdullah, Naseem, Rashid, Uddin, Jamal
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesAdvances in Intelligent Systems and Computing
Subjects
Online AccessGet full text
ISBN9783319512792
331951279X
ISSN2194-5357
2194-5365
2194-5365
DOI10.1007/978-3-319-51281-5_2

Cover

Abstract This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; therefore, it is not devoid of local minima and slow convergence problem. This paper used a new metaheuristic search algorithm, called wolf search (WS) based on wolf’s predatory behavior to train the weights in ERNN to achieve faster convergence and to avoid the local minima. The performance of the proposed Metahybrid Wolf Search Elman Recurrent Neural Network (WRNN) is compared with Bat with back propagation (Bat-BP) algorithm and other hybrid variants on benchmark classification datasets. The simulation results show that the proposed Metahybrid WRNN algorithm has better performance in terms of CPU time, accuracy and MSE than the other algorithms.
AbstractList This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; therefore, it is not devoid of local minima and slow convergence problem. This paper used a new metaheuristic search algorithm, called wolf search (WS) based on wolf’s predatory behavior to train the weights in ERNN to achieve faster convergence and to avoid the local minima. The performance of the proposed Metahybrid Wolf Search Elman Recurrent Neural Network (WRNN) is compared with Bat with back propagation (Bat-BP) algorithm and other hybrid variants on benchmark classification datasets. The simulation results show that the proposed Metahybrid WRNN algorithm has better performance in terms of CPU time, accuracy and MSE than the other algorithms.
Author Rehman, M. Z.
Uddin, Jamal
Naseem, Rashid
Khan, Abdullah
Nawi, Nazri Mohd
Hamid, Norhamreeza Abdul
Author_xml – sequence: 1
  givenname: Nazri Mohd
  surname: Nawi
  fullname: Nawi, Nazri Mohd
  email: nazri@uthm.edu.my
– sequence: 2
  givenname: M. Z.
  surname: Rehman
  fullname: Rehman, M. Z.
– sequence: 3
  givenname: Norhamreeza Abdul
  surname: Hamid
  fullname: Hamid, Norhamreeza Abdul
– sequence: 4
  givenname: Abdullah
  surname: Khan
  fullname: Khan, Abdullah
– sequence: 5
  givenname: Rashid
  surname: Naseem
  fullname: Naseem, Rashid
– sequence: 6
  givenname: Jamal
  surname: Uddin
  fullname: Uddin, Jamal
BookMark eNqFkNtKAzEQhqNWsdY-gTd5gdUcNsnmshRPUKx4oJch3Sa7a_dkskupT2_aingnDAz8k2-YfBdgUDe1AeAKo2uMkLiRIoloRLGMGCYJjpgiR2AcUhqyfcSOwZBgGUeMcnbydyYkGfzOmDgDQ8lFyFHMzsHY-w-EEBacYIyG4HnedkVVfBV1BhemyPLOw6KGt2Wla_hi0t45U3fwyfROl6F1m8atPdwUXQ4XTWnhq9EuzeGkzBoXwuoSnFpdejP-6SPwfnf7Nn2IZvP7x-lkFrUkYV2U6FgSLShe2WTFLbIpQ4mMWbjaap5YnsaIIGutEFobbiQOnxOMpXwpEmZTOgLxYW9ft3q70WWpWldU2m0VRmonUQUliqrAqb0xFSQGDB8wH17XmXFq2TRr_w9DDkzrms_e-E6ZHZQGMUFKmuu2M86rWIgYc6RoKEy_AbiLgHA
ContentType Book Chapter
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID FFUUA
ABOKW
UNPAY
DEWEY 006.3
DOI 10.1007/978-3-319-51281-5_2
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISBN 9783319512815
3319512811
EISSN 2194-5365
Editor Deris, Mustafa Mat
Ghazali, Rozaida
Herawan, Tutut
Nawi, Nazri Mohd
Editor_xml – sequence: 1
  fullname: Deris, Mustafa Mat
– sequence: 2
  fullname: Ghazali, Rozaida
– sequence: 3
  fullname: Herawan, Tutut
– sequence: 4
  fullname: Nawi, Nazri Mohd
EndPage 20
ExternalDocumentID 10.1007/978-3-319-51281-5_2
EBC4774160_30_31
GroupedDBID 0D9
0DA
20A
38.
AABBV
AALVI
AAZIN
ABMNI
ABQUB
ACBPT
ACLYY
ADCXD
AEJLV
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CEWPM
CZZ
DBMNP
FFUUA
I4C
IEZ
MYL
SBO
SWYDZ
TPJZQ
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ACGFS
RSU
ABOKW
UNPAY
ID FETCH-LOGICAL-p285t-8a492a731df8d6f0fc508945194fa68f6c4020fff77aae6e91319755c6b785fc3
IEDL.DBID UNPAY
ISBN 9783319512792
331951279X
ISSN 2194-5357
2194-5365
IngestDate Sun Sep 07 10:41:21 EDT 2025
Tue Jul 29 20:15:05 EDT 2025
Thu May 29 17:11:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
LCCallNum Q342
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p285t-8a492a731df8d6f0fc508945194fa68f6c4020fff77aae6e91319755c6b785fc3
OCLC 967512045
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/978-3-319-51281-5_2
PQID EBC4774160_30_31
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_978_3_319_51281_5_2
springer_books_10_1007_978_3_319_51281_5_2
proquest_ebookcentralchapters_4774160_30_31
PublicationCentury 2000
PublicationDate 2016
2017
PublicationDateYYYYMMDD 2016-01-01
2017-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Advances in Intelligent Systems and Computing
PublicationSeriesTitleAlternate Advs in Intelligent Syst., Computing
PublicationSubtitle The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings
PublicationTitle Advances in intelligent systems and computing
PublicationYear 2016
2017
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hagras, Hani
Lin, Chin-Teng
Kóczy, László T.
Wang, Jun
Bello Perez, Rafael
Lu, Jie
Pal, Nikhil R.
Melin, Patricia
Nguyen, Ngoc Thanh
Kacprzyk, Janusz
Kreinovich, Vladik
Corchado, Emilio S.
Nedjah, Nadia
RelatedPersons_xml – sequence: 1
  givenname: Janusz
  surname: Kacprzyk
  fullname: Kacprzyk, Janusz
– sequence: 2
  givenname: Nikhil R.
  surname: Pal
  fullname: Pal, Nikhil R.
– sequence: 3
  givenname: Rafael
  surname: Bello Perez
  fullname: Bello Perez, Rafael
– sequence: 4
  givenname: Emilio S.
  surname: Corchado
  fullname: Corchado, Emilio S.
– sequence: 5
  givenname: Hani
  surname: Hagras
  fullname: Hagras, Hani
– sequence: 6
  givenname: László T.
  surname: Kóczy
  fullname: Kóczy, László T.
– sequence: 7
  givenname: Vladik
  surname: Kreinovich
  fullname: Kreinovich, Vladik
– sequence: 8
  givenname: Chin-Teng
  surname: Lin
  fullname: Lin, Chin-Teng
– sequence: 9
  givenname: Jie
  surname: Lu
  fullname: Lu, Jie
– sequence: 10
  givenname: Patricia
  surname: Melin
  fullname: Melin, Patricia
– sequence: 11
  givenname: Nadia
  surname: Nedjah
  fullname: Nedjah, Nadia
– sequence: 12
  givenname: Ngoc Thanh
  orcidid: 0000-0002-3247-2948
  surname: Nguyen
  fullname: Nguyen, Ngoc Thanh
– sequence: 13
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
SSID ssj0001762110
ssj0002381522
Score 1.8220149
Snippet This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of...
SourceID unpaywall
springer
proquest
SourceType Open Access Repository
Publisher
StartPage 11
SubjectTerms Artificial intelligence
Data mining
Elman recurrent network
Local minima
Metaheuristic optimization
Nature inspired algorithms
Wolf search algorithm
Title Optimizing Weights in Elman Recurrent Neural Networks with Wolf Search Algorithm
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4774160&ppg=31
http://link.springer.com/10.1007/978-3-319-51281-5_2
https://doi.org/10.1007/978-3-319-51281-5_2
UnpaywallVersion publishedVersion
Volume 549
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6yPYg-eMeJSh58UqLrJUnzOGQi4g1xXp5CmjYy7LphN0R_vee03VARUSj0wqGQL2l6cs75vhCy5wKhpHPwIcEAYWFoYhb7vmTCyihxnpcoi9zhi0tx2gvPHvhDrbONXJhv-fujKnuPTBuOOR_GNcy3TcHB8W6QZu_yuvOI28fBUpzxoNT1rK8Fn2kM_fiWLx7lLAm6QOYn-ci8vZos-_SfOVmqCNxFKU-I5SXPh5NxfGjfv4k3_rEJy2QRqQwUOQYA3wqZS_NVsvBJgnCNXF_BnDHov8MNvS_DpAXt57SbDUxObzAYj_JNFDU8TAansmi8oBi-pffDzNGqXpl2sqfhCzwcrJPeSff2-JTVuyywkR_xMYtMqHwjAy9xUSJc21nw2RSqzoTOiMgJi0tM55yUxqQiVR40RXJuRSwj7mywQRr5ME83CfU9p6LEmrTt4jCKEyyBSxIVKM-q2AjbIgdTzHWZC64LUG0FQ6FDiQ5iWwdweC2yP-0WjcaFnkosA6I6AAulS0Q1INoibNZxelQJdfxmv_VP-23SGL9M0h3wQMbxLml2umfnd7v1CPwAvuzTIg
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH2Q-eMeJSh58UjLXS5LmUWRDBC-Iw_kU0rSRYdcNuyH66z2n7YaKiEKhFw6FfEnTk3PO94WQIxcIJZ2DDwkGCAtDE7PY9yUTVkaJ87xEWeQOX12Li354OeCDWmcbuTDf8venVfYemTYccz6Ma5hvlwUHx7tBlvvXt2ePuH0cLMUZD0pdz_pa8IXG0I9v-eJRLpKgTbIyyyfm7dVk2af_TG-tInAXpTwhlpc8t2fTuG3fv4k3_rEJ62QVqQwUOQYA3wZZSvNN0vwkQbhFbm9gzhgN3-GGPpRh0oIOc9rNRiandxiMR_kmihoeJoNTWTReUAzf0odx5mhVr0zPsqfxCzwcbZN-r3t_fsHqXRbYxI_4lEUmVL6RgZe4KBGu4yz4bApVZ0JnROSExSWmc05KY1KRKg-aIjm3IpYRdzbYIY18nKe7hPqeU1FiTdpxcRjFCZbAJYkKlGdVbIRtkZM55rrMBdcFqLaCodChRAexowM4vBY5nneLRuNCzyWWAVEdgIXSJaIaEG0Rtug4PamEOn6z3_un_T5pTF9m6QF4INP4sB55Hy3P0Y0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recent+Advances+on+Soft+Computing+and+Data+Mining&rft.atitle=Optimizing+Weights+in+Elman+Recurrent+Neural+Networks+with+Wolf+Search+Algorithm&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319512792&rft.volume=549&rft_id=info:doi/10.1007%2F978-3-319-51281-5_2&rft.externalDBID=31&rft.externalDocID=EBC4774160_30_31
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4774160-l.jpg