Optimizing Weights in Elman Recurrent Neural Networks with Wolf Search Algorithm
This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; th...
        Saved in:
      
    
          | Published in | Advances in intelligent systems and computing Vol. 549; pp. 11 - 20 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Book Chapter | 
| Language | English | 
| Published | 
        Switzerland
          Springer International Publishing AG
    
        2016
     Springer International Publishing  | 
| Series | Advances in Intelligent Systems and Computing | 
| Subjects | |
| Online Access | Get full text | 
| ISBN | 9783319512792 331951279X  | 
| ISSN | 2194-5357 2194-5365 2194-5365  | 
| DOI | 10.1007/978-3-319-51281-5_2 | 
Cover
| Abstract | This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; therefore, it is not devoid of local minima and slow convergence problem. This paper used a new metaheuristic search algorithm, called wolf search (WS) based on wolf’s predatory behavior to train the weights in ERNN to achieve faster convergence and to avoid the local minima. The performance of the proposed Metahybrid Wolf Search Elman Recurrent Neural Network (WRNN) is compared with Bat with back propagation (Bat-BP) algorithm and other hybrid variants on benchmark classification datasets. The simulation results show that the proposed Metahybrid WRNN algorithm has better performance in terms of CPU time, accuracy and MSE than the other algorithms. | 
    
|---|---|
| AbstractList | This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of the most efficient feed forward neural network learning algorithm. Since ERNN uses gradient descent technique during the training process; therefore, it is not devoid of local minima and slow convergence problem. This paper used a new metaheuristic search algorithm, called wolf search (WS) based on wolf’s predatory behavior to train the weights in ERNN to achieve faster convergence and to avoid the local minima. The performance of the proposed Metahybrid Wolf Search Elman Recurrent Neural Network (WRNN) is compared with Bat with back propagation (Bat-BP) algorithm and other hybrid variants on benchmark classification datasets. The simulation results show that the proposed Metahybrid WRNN algorithm has better performance in terms of CPU time, accuracy and MSE than the other algorithms. | 
    
| Author | Rehman, M. Z. Uddin, Jamal Naseem, Rashid Khan, Abdullah Nawi, Nazri Mohd Hamid, Norhamreeza Abdul  | 
    
| Author_xml | – sequence: 1 givenname: Nazri Mohd surname: Nawi fullname: Nawi, Nazri Mohd email: nazri@uthm.edu.my – sequence: 2 givenname: M. Z. surname: Rehman fullname: Rehman, M. Z. – sequence: 3 givenname: Norhamreeza Abdul surname: Hamid fullname: Hamid, Norhamreeza Abdul – sequence: 4 givenname: Abdullah surname: Khan fullname: Khan, Abdullah – sequence: 5 givenname: Rashid surname: Naseem fullname: Naseem, Rashid – sequence: 6 givenname: Jamal surname: Uddin fullname: Uddin, Jamal  | 
    
| BookMark | eNqFkNtKAzEQhqNWsdY-gTd5gdUcNsnmshRPUKx4oJch3Sa7a_dkskupT2_aingnDAz8k2-YfBdgUDe1AeAKo2uMkLiRIoloRLGMGCYJjpgiR2AcUhqyfcSOwZBgGUeMcnbydyYkGfzOmDgDQ8lFyFHMzsHY-w-EEBacYIyG4HnedkVVfBV1BhemyPLOw6KGt2Wla_hi0t45U3fwyfROl6F1m8atPdwUXQ4XTWnhq9EuzeGkzBoXwuoSnFpdejP-6SPwfnf7Nn2IZvP7x-lkFrUkYV2U6FgSLShe2WTFLbIpQ4mMWbjaap5YnsaIIGutEFobbiQOnxOMpXwpEmZTOgLxYW9ft3q70WWpWldU2m0VRmonUQUliqrAqb0xFSQGDB8wH17XmXFq2TRr_w9DDkzrms_e-E6ZHZQGMUFKmuu2M86rWIgYc6RoKEy_AbiLgHA | 
    
| ContentType | Book Chapter | 
    
| Copyright | Springer International Publishing AG 2017 | 
    
| Copyright_xml | – notice: Springer International Publishing AG 2017 | 
    
| DBID | FFUUA ABOKW UNPAY  | 
    
| DEWEY | 006.3 | 
    
| DOI | 10.1007/978-3-319-51281-5_2 | 
    
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall  | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Engineering  | 
    
| EISBN | 9783319512815 3319512811  | 
    
| EISSN | 2194-5365 | 
    
| Editor | Deris, Mustafa Mat Ghazali, Rozaida Herawan, Tutut Nawi, Nazri Mohd  | 
    
| Editor_xml | – sequence: 1 fullname: Deris, Mustafa Mat – sequence: 2 fullname: Ghazali, Rozaida – sequence: 3 fullname: Herawan, Tutut – sequence: 4 fullname: Nawi, Nazri Mohd  | 
    
| EndPage | 20 | 
    
| ExternalDocumentID | 10.1007/978-3-319-51281-5_2 EBC4774160_30_31  | 
    
| GroupedDBID | 0D9 0DA 20A 38. AABBV AALVI AAZIN ABMNI ABQUB ACBPT ACLYY ADCXD AEJLV AEKFX AETDV AEZAY AGIGN AGYGE AIODD ALBAV ALMA_UNASSIGNED_HOLDINGS AZZ BBABE CEWPM CZZ DBMNP FFUUA I4C IEZ MYL SBO SWYDZ TPJZQ Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 ACGFS RSU ABOKW UNPAY  | 
    
| ID | FETCH-LOGICAL-p285t-8a492a731df8d6f0fc508945194fa68f6c4020fff77aae6e91319755c6b785fc3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISBN | 9783319512792 331951279X  | 
    
| ISSN | 2194-5357 2194-5365  | 
    
| IngestDate | Sun Sep 07 10:41:21 EDT 2025 Tue Jul 29 20:15:05 EDT 2025 Thu May 29 17:11:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| LCCallNum | Q342 | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-p285t-8a492a731df8d6f0fc508945194fa68f6c4020fff77aae6e91319755c6b785fc3 | 
    
| OCLC | 967512045 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/978-3-319-51281-5_2 | 
    
| PQID | EBC4774160_30_31 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_978_3_319_51281_5_2 springer_books_10_1007_978_3_319_51281_5_2 proquest_ebookcentralchapters_4774160_30_31  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016 2017  | 
    
| PublicationDateYYYYMMDD | 2016-01-01 2017-01-01  | 
    
| PublicationDate_xml | – year: 2016 text: 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Cham  | 
    
| PublicationSeriesTitle | Advances in Intelligent Systems and Computing | 
    
| PublicationSeriesTitleAlternate | Advs in Intelligent Syst., Computing | 
    
| PublicationSubtitle | The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings | 
    
| PublicationTitle | Advances in intelligent systems and computing | 
    
| PublicationYear | 2016 2017  | 
    
| Publisher | Springer International Publishing AG Springer International Publishing  | 
    
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing  | 
    
| RelatedPersons | Hagras, Hani Lin, Chin-Teng Kóczy, László T. Wang, Jun Bello Perez, Rafael Lu, Jie Pal, Nikhil R. Melin, Patricia Nguyen, Ngoc Thanh Kacprzyk, Janusz Kreinovich, Vladik Corchado, Emilio S. Nedjah, Nadia  | 
    
| RelatedPersons_xml | – sequence: 1 givenname: Janusz surname: Kacprzyk fullname: Kacprzyk, Janusz – sequence: 2 givenname: Nikhil R. surname: Pal fullname: Pal, Nikhil R. – sequence: 3 givenname: Rafael surname: Bello Perez fullname: Bello Perez, Rafael – sequence: 4 givenname: Emilio S. surname: Corchado fullname: Corchado, Emilio S. – sequence: 5 givenname: Hani surname: Hagras fullname: Hagras, Hani – sequence: 6 givenname: László T. surname: Kóczy fullname: Kóczy, László T. – sequence: 7 givenname: Vladik surname: Kreinovich fullname: Kreinovich, Vladik – sequence: 8 givenname: Chin-Teng surname: Lin fullname: Lin, Chin-Teng – sequence: 9 givenname: Jie surname: Lu fullname: Lu, Jie – sequence: 10 givenname: Patricia surname: Melin fullname: Melin, Patricia – sequence: 11 givenname: Nadia surname: Nedjah fullname: Nedjah, Nadia – sequence: 12 givenname: Ngoc Thanh orcidid: 0000-0002-3247-2948 surname: Nguyen fullname: Nguyen, Ngoc Thanh – sequence: 13 givenname: Jun surname: Wang fullname: Wang, Jun  | 
    
| SSID | ssj0001762110 ssj0002381522  | 
    
| Score | 1.8220149 | 
    
| Snippet | This paper presents a Metahybrid algorithm that consists of the dual combination of Wolf Search (WS) and Elman Recurrent Neural Network (ERNN). ERNN is one of... | 
    
| SourceID | unpaywall springer proquest  | 
    
| SourceType | Open Access Repository Publisher  | 
    
| StartPage | 11 | 
    
| SubjectTerms | Artificial intelligence Data mining Elman recurrent network Local minima Metaheuristic optimization Nature inspired algorithms Wolf search algorithm  | 
    
| Title | Optimizing Weights in Elman Recurrent Neural Networks with Wolf Search Algorithm | 
    
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4774160&ppg=31 http://link.springer.com/10.1007/978-3-319-51281-5_2 https://doi.org/10.1007/978-3-319-51281-5_2  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 549 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6yPYg-eMeJSh58UqLrJUnzOGQi4g1xXp5CmjYy7LphN0R_vee03VARUSj0wqGQL2l6cs75vhCy5wKhpHPwIcEAYWFoYhb7vmTCyihxnpcoi9zhi0tx2gvPHvhDrbONXJhv-fujKnuPTBuOOR_GNcy3TcHB8W6QZu_yuvOI28fBUpzxoNT1rK8Fn2kM_fiWLx7lLAm6QOYn-ci8vZos-_SfOVmqCNxFKU-I5SXPh5NxfGjfv4k3_rEJy2QRqQwUOQYA3wqZS_NVsvBJgnCNXF_BnDHov8MNvS_DpAXt57SbDUxObzAYj_JNFDU8TAansmi8oBi-pffDzNGqXpl2sqfhCzwcrJPeSff2-JTVuyywkR_xMYtMqHwjAy9xUSJc21nw2RSqzoTOiMgJi0tM55yUxqQiVR40RXJuRSwj7mywQRr5ME83CfU9p6LEmrTt4jCKEyyBSxIVKM-q2AjbIgdTzHWZC64LUG0FQ6FDiQ5iWwdweC2yP-0WjcaFnkosA6I6AAulS0Q1INoibNZxelQJdfxmv_VP-23SGL9M0h3wQMbxLml2umfnd7v1CPwAvuzTIg | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA4yH2Q-eMeJSh58UjLXS5LmUWRDBC-Iw_kU0rSRYdcNuyH66z2n7YaKiEKhFw6FfEnTk3PO94WQIxcIJZ2DDwkGCAtDE7PY9yUTVkaJ87xEWeQOX12Li354OeCDWmcbuTDf8venVfYemTYccz6Ma5hvlwUHx7tBlvvXt2ePuH0cLMUZD0pdz_pa8IXG0I9v-eJRLpKgTbIyyyfm7dVk2af_TG-tInAXpTwhlpc8t2fTuG3fv4k3_rEJ62QVqQwUOQYA3wZZSvNN0vwkQbhFbm9gzhgN3-GGPpRh0oIOc9rNRiandxiMR_kmihoeJoNTWTReUAzf0odx5mhVr0zPsqfxCzwcbZN-r3t_fsHqXRbYxI_4lEUmVL6RgZe4KBGu4yz4bApVZ0JnROSExSWmc05KY1KRKg-aIjm3IpYRdzbYIY18nKe7hPqeU1FiTdpxcRjFCZbAJYkKlGdVbIRtkZM55rrMBdcFqLaCodChRAexowM4vBY5nneLRuNCzyWWAVEdgIXSJaIaEG0Rtug4PamEOn6z3_un_T5pTF9m6QF4INP4sB55Hy3P0Y0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Recent+Advances+on+Soft+Computing+and+Data+Mining&rft.atitle=Optimizing+Weights+in+Elman+Recurrent+Neural+Networks+with+Wolf+Search+Algorithm&rft.date=2016-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319512792&rft.volume=549&rft_id=info:doi/10.1007%2F978-3-319-51281-5_2&rft.externalDBID=31&rft.externalDocID=EBC4774160_30_31 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4774160-l.jpg |