Lithiophilic V2CTx/MoO3 Hosts with Electronic/Ionic Dual Conductive Gradients for Ultrahigh‐Rate Lithium Metal Anodes

Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic cond...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 41
Main Authors Yao, Wei, Chen, Zhiwei, Zhang, Xiao, Luo, Juhua, Wang, Jinshan, He, Meng, Chen, Chi, Cheng, Xin‐Bing, Xu, Jianguang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 08.10.2024
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202400348

Cover

Abstract Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic conductive gradients and lithiophilicity is prepared by layer‐by‐layer assembly for dendrite‐free Li anodes. Gradient LiF deriving from different amount of V2CTx endows a good ionic conductive gradient; while, MoO3 is regarded as a spacer to avoid the restacking of V2CTx, increasing space for Li deposition. The dual conductive gradients effectively optimize the current density and Li+ flux distribution at the bottom, achieving fast reduction of Li+ and a “bottom–up” Li deposition mode. Meanwhile, the lithiophilic V2CTx and MoO3 guide the homogeneous Li growth. As a result, the symmetrical half‐cells based on DG‐V2CTx/MoO3@Li anodes conduct 700 h at 5 mAh cm−2 and 20 mA cm−2. The DG‐V2CTx/MoO3@Li||LiFePO4 full‐cells maintain a capacity retention of 85.4% after 1350 cycles at 2 C. Remarkably, the DG‐V2CTx/MoO3@Li||LiNi0.6Co0.2Mn0.2O2 full‐cells can run 150 cycles with 80.6% capacity retention even at harsh conditions. The well‐adjusted materials and structures with both dual conductive gradients and lithiophilic properties will bring inspiration for novel material design of other metal batteries. The electronic/ionic dual conductive gradients of the DG‐V2CTx/MoO3 promote the uniform distribution of the current density and Li+ flux at the bottom of the anodes, enabling preferential reduction of Li+ at the bottom layer and achieving “bottom–up” deposition mode; while, lithiophilic V2CTx and MoO3 can induce the uniform nucleation and growth of Li at high rate.
AbstractList Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic conductive gradients and lithiophilicity is prepared by layer‐by‐layer assembly for dendrite‐free Li anodes. Gradient LiF deriving from different amount of V2CTx endows a good ionic conductive gradient; while, MoO3 is regarded as a spacer to avoid the restacking of V2CTx, increasing space for Li deposition. The dual conductive gradients effectively optimize the current density and Li+ flux distribution at the bottom, achieving fast reduction of Li+ and a “bottom–up” Li deposition mode. Meanwhile, the lithiophilic V2CTx and MoO3 guide the homogeneous Li growth. As a result, the symmetrical half‐cells based on DG‐V2CTx/MoO3@Li anodes conduct 700 h at 5 mAh cm−2 and 20 mA cm−2. The DG‐V2CTx/MoO3@Li||LiFePO4 full‐cells maintain a capacity retention of 85.4% after 1350 cycles at 2 C. Remarkably, the DG‐V2CTx/MoO3@Li||LiNi0.6Co0.2Mn0.2O2 full‐cells can run 150 cycles with 80.6% capacity retention even at harsh conditions. The well‐adjusted materials and structures with both dual conductive gradients and lithiophilic properties will bring inspiration for novel material design of other metal batteries.
Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic conductive gradients and lithiophilicity is prepared by layer‐by‐layer assembly for dendrite‐free Li anodes. Gradient LiF deriving from different amount of V2CTx endows a good ionic conductive gradient; while, MoO3 is regarded as a spacer to avoid the restacking of V2CTx, increasing space for Li deposition. The dual conductive gradients effectively optimize the current density and Li+ flux distribution at the bottom, achieving fast reduction of Li+ and a “bottom–up” Li deposition mode. Meanwhile, the lithiophilic V2CTx and MoO3 guide the homogeneous Li growth. As a result, the symmetrical half‐cells based on DG‐V2CTx/MoO3@Li anodes conduct 700 h at 5 mAh cm−2 and 20 mA cm−2. The DG‐V2CTx/MoO3@Li||LiFePO4 full‐cells maintain a capacity retention of 85.4% after 1350 cycles at 2 C. Remarkably, the DG‐V2CTx/MoO3@Li||LiNi0.6Co0.2Mn0.2O2 full‐cells can run 150 cycles with 80.6% capacity retention even at harsh conditions. The well‐adjusted materials and structures with both dual conductive gradients and lithiophilic properties will bring inspiration for novel material design of other metal batteries. The electronic/ionic dual conductive gradients of the DG‐V2CTx/MoO3 promote the uniform distribution of the current density and Li+ flux at the bottom of the anodes, enabling preferential reduction of Li+ at the bottom layer and achieving “bottom–up” deposition mode; while, lithiophilic V2CTx and MoO3 can induce the uniform nucleation and growth of Li at high rate.
Author Chen, Zhiwei
Zhang, Xiao
Xu, Jianguang
Luo, Juhua
Wang, Jinshan
He, Meng
Yao, Wei
Cheng, Xin‐Bing
Chen, Chi
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-9327-5403
  surname: Yao
  fullname: Yao, Wei
  email: weiyao@ycit.edu.cn
  organization: Yancheng Institute of Technology
– sequence: 2
  givenname: Zhiwei
  surname: Chen
  fullname: Chen, Zhiwei
  organization: Yancheng Institute of Technology
– sequence: 3
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
  organization: Yancheng Institute of Technology
– sequence: 4
  givenname: Juhua
  surname: Luo
  fullname: Luo, Juhua
  organization: Yancheng Institute of Technology
– sequence: 5
  givenname: Jinshan
  surname: Wang
  fullname: Wang, Jinshan
  organization: Yancheng Institute of Technology
– sequence: 6
  givenname: Meng
  surname: He
  fullname: He, Meng
  organization: Yancheng Institute of Technology
– sequence: 7
  givenname: Chi
  surname: Chen
  fullname: Chen, Chi
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Xin‐Bing
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  email: chengxb@seu.edu.cn
  organization: Tianmu Lake Institute of Advanced Energy Storage Technologies
– sequence: 9
  givenname: Jianguang
  surname: Xu
  fullname: Xu, Jianguang
  email: xujg@sspu.edu.cn
  organization: Shanghai Polytechnic University
BookMark eNo9kMtuwjAQRa2KSgXabdeWug74EZxkicJTAiFVUHVnOY7TGIU4dZxSdv2EfmO_pKFUbObOaO7MlU4PdEpTKgAeMRpghMhQpNlhQBDxEaJ-eAO6mGHmUUTCzrXHr3egV9d7hHAQUL8Ljivtcm2qXBdawhcSbz-Ha7OhcGFqV8Nju4XTQklnTanlcHmucNKIAsamTBvp9IeCcytSrcrWnxkLd4WzItdv-c_X97NwCv5FNAe4Vq69G5cmVfU9uM1EUauHf-2D3Wy6jRfeajNfxuOVV5GAhl7EpK9INopQwvyIJTiIiBAYyyQUVKqMKl8Q2ioLJMZMpCFSwShIEVIiYVTRPni6_K2seW9U7fjeNLZsIznFuOXkI8JaV3RxHXWhTryy-iDsiWPEz2T5mSy_kuXjyWx9negvevNydQ
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202400348
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202400348
Genre article
GrantInformation_xml – fundername: Shanghai Local Capacity Building Program
  funderid: 23010500700
– fundername: National Natural Science Foundation of China
  funderid: 51602277; 21671167
– fundername: Jiangsu Provincial Key Laboratory of Eco‐Environmental Materials
– fundername: Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education
  funderid: PEBM202106
– fundername: Project of Shanghai Municipal Science and Technology Commission
  funderid: 22DZ2291100
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
1OB
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-p2738-96c4e2f590b6496b1792aa11cb8a3cef3e4a23ef367c116ad80e757d00eab63e3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 04:23:07 EDT 2025
Wed Jan 22 17:14:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2738-96c4e2f590b6496b1792aa11cb8a3cef3e4a23ef367c116ad80e757d00eab63e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9327-5403
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202400348
PQID 3113484026
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_3113484026
wiley_primary_10_1002_adfm_202400348_ADFM202400348
PublicationCentury 2000
PublicationDate October 8, 2024
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: October 8, 2024
  day: 08
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 76
2023; 35
2023; 36
2023; 33
2023; 34
2023; 6
2023; 8
2019; 13
2019; 15
2020; 16
2020; 56
2022; 21
2022; 22
2022; 28
2023; 80
2018; 9
2020; 5
2021; 31
2021; 34
2018; 1
2023; 451
2022; 32
2022; 924
2023; 613
2023; 938
2012; 22
2021; 9
2023; 10
2019; 9
2023; 57
2023; 58
2023; 14
2023; 18
2022; 93
2023; 15
2022; 51
2017; 27
2023; 563
2023; 442
2023; 446
2022; 47
2023; 642
2022; 41
2020; 32
2021; 13
2020; 30
2022; 61
2022; 5
2023; 632
2020; 26
2022; 97
2022; 429
2022; 10
2021; 495
2018; 12
2022; 16
2022; 18
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 18
  year: 2023
  publication-title: eTransportation
– volume: 446
  year: 2023
  publication-title: Electrochim. Acta
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 2543
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 41
  start-page: 2217
  year: 2022
  publication-title: Rare Met.
– volume: 10
  start-page: 7188
  year: 2022
  publication-title: ACS Sustainable Chem. Eng.
– volume: 76
  start-page: 631
  year: 2023
  publication-title: J. Energy Chem.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 4961
  year: 2022
  publication-title: Nano Res.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 4529
  year: 2023
  publication-title: Nanoscale
– volume: 12
  start-page: 161
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 80
  start-page: 207
  year: 2023
  publication-title: J. Energy Chem.
– volume: 642
  start-page: 193
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 26
  start-page: 250
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 58
  start-page: 322
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 495
  year: 2021
  publication-title: J. Power Sources
– volume: 632
  start-page: 1
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 21
  start-page: 445
  year: 2022
  publication-title: Nat. Mater.
– volume: 924
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 28
  year: 2022
  publication-title: Chem. ‐ Eur. J.
– volume: 93
  year: 2022
  publication-title: Nano Energy
– volume: 5
  start-page: 3108
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 613
  year: 2023
  publication-title: Appl. Surf. Sci.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 97
  year: 2022
  publication-title: Nano Energy
– volume: 14
  start-page: 191
  year: 2023
  publication-title: Micromachines
– volume: 15
  year: 2019
  publication-title: Small
– volume: 57
  start-page: 249
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 6
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 51
  start-page: 660
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 563
  year: 2023
  publication-title: J. Power Sources
– volume: 8
  start-page: 179
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 6444
  year: 2020
  publication-title: Chem. Commun.
– volume: 34
  start-page: 499
  year: 2021
  publication-title: Chem. Mater.
– volume: 15
  start-page: 3089
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 442
  year: 2023
  publication-title: Electrochim. Acta
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 34
  year: 2023
  publication-title: Chin. Chem. Lett.
– volume: 47
  start-page: 620
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 51
  start-page: 4248
  year: 2022
  publication-title: J. Electron. Mater.
– volume: 47
  start-page: 482
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 22
  start-page: 1145
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 4341
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 36
  year: 2023
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4861
  year: 2022
  publication-title: Nano Lett.
– volume: 938
  year: 2023
  publication-title: J. Alloys Compd.
SSID ssj0017734
Score 2.600781
Snippet Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Anodes
Deposition
dual conductive gradients
Electrode materials
high rate
Li metal anodes
Lithium
Molybdenum trioxide
V2CTx
“bottom–up” deposition
Title Lithiophilic V2CTx/MoO3 Hosts with Electronic/Ionic Dual Conductive Gradients for Ultrahigh‐Rate Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202400348
https://www.proquest.com/docview/3113484026
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1616-301X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1616-3028
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017734
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgRywF-cA1TWxnPVZdKIiCVLWot8hOHFoBSdUkAnHiE_hGvoRx0oaWI1yyKHHijD2T5_HMM0KXlEURoGKpEZMX3iqqAaiXWgB9R7jcNaShEpz7d3ZvZN6MrfFKFn_JD1E53JRmFPZaKTgXqf5DGsrDSGWSqxhIZqpsX8KsYp52UPFHEccpp5VtogK8yHjJ2mhQfb34Gr5cRanFb6a7g_iygmV0yVMjz0QjeP_F3fifL9hF2wsMiptlp9lDGzLeR1srzIQH6PV2mk2myUy5WwL8QFvDN72f3DPcS9Isxcp7izvVCjr6tdridg5PbSWxopAFI4qv5kU8GdwPyBiPnjMwbNPHydfH5wAQLi5ekb_gvsxUbeIklOkhGnU7w1ZPW6zRoM1UUo_m2YEpaWR5hrBNzxag35RzQgJoaBbIiEmTUwZ72wkIsXkIre9YTmgYkgubSXaEanESy2OEKXVdK4wU5ndMYXCP09AMBOFeFAoYBZ2g-rKN_IWipT4jBGQHg2C4TAth-7OSpsMvCZmpr8TsV2L2m-1uvzo7_UuhM7SpjstIwDqqZfNcngM0ycRF0f2-AaL63Rk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjA9fQ2E6zHFFLKdAUCbWIW2QnDq2ApKKpQJz4BL6RL2EmaQPlCJdEWZw44xnneTzzTMgxF3EMqFgbzJK5t4obAOq1EYLuKFe6pjYxwdlv282udXlXnUQTYi5MwQ9ROtzQMvL-Gg0cHdKVb9ZQGcWYSo5BkMJyZ8k8TtKhbdZvSgYp5jjFxLLNMMSL3U14G01emS4_hTB_4tT8R9NYIWpSxSK-5OFklKmT8O0Xe-O_vmGVLI9hKD0t9GaNzOhknSz9ICfcIC-tftbrpwP0uIT0ltc6rxU_vRa0mQ6zIUUHLj0rF9GpXOCW1kfw1FqaIIss9KP0_DkPKYP7ARzT7mMGfVv_vvf5_nEDIJfmrxg9UV9nWJskjfRwk3QbZ51a0xgv02AMMK_H8OzQ0jyueqayLc9WYOJcSsZCaGsR6lhoS3IBe9sJGbNlBArgVJ3INLVUttBii8wlaaK3CeXcdatRjLDfsZQpPckjK1RMenGkYCC0Q_YnjRSMbW0YCMZAdjAOhss8l3YwKJg6goKTmQco5qAUc3Bab_jl0e5fCh2RhWbHbwWti_bVHlnE80Vg4D6Zy55H-gCQSqYOc138AoL24TU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1xD46VOckQtpYUWEGpRb5GdOFABSUVTgTjxCXwjX8I4aUPLES6Jsjhxxp7x82TmGaFjyqIIULG2CJeZt4paAOq1FUDfUa50bW2bBOfWlah3-EW33J3I4s_5IQqHm9GMzF4bBe-HUemHNFSGkckkNzGQjLuzaJ4LmGIZWHRbEEgRx8n_KwtiIrxId0zbaNPSdPkpgDkJU7NxpraC5LiGeXjJ48kwVSfB-y_yxv98wipaHoFQfJr3mjU0o-N1tDRBTbiBXpu99KGX9I2_JcB3tNJ-K7WSa4brySAdYOO-xWfFEjqlhtni6hCeWkliwyELVhSfv2QBZXA_QGPceUrBsvXuH74-Pm8B4uLsFcNn3NKpqU2chHqwiTq1s3albo0WabD6JqvH8kTANY3Knq0E94QCBadSEhJAS7NAR0xzSRnshRMQImQIze-UndC2tVSCabaF5uIk1tsIU-q65TAyoN_hypaepCEPFJFeFCqYBu2g_XEb-SNNG_iMEJAdzILhMs2E7fdzng4_Z2SmvhGzX4jZP63WWsXR7l8KHaGFm2rNbzauLvfQojmdRwXuo7n0ZagPAKak6jDrid_5eN_k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+V2CTx%2FMoO3+Hosts+with+Electronic%2FIonic+Dual+Conductive+Gradients+for+Ultrahigh%E2%80%90Rate+Lithium+Metal+Anodes&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Wei&rft.au=Chen%2C+Zhiwei&rft.au=Zhang%2C+Xiao&rft.au=Luo%2C+Juhua&rft.date=2024-10-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=41&rft_id=info:doi/10.1002%2Fadfm.202400348&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon