Lithiophilic V2CTx/MoO3 Hosts with Electronic/Ionic Dual Conductive Gradients for Ultrahigh‐Rate Lithium Metal Anodes
Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic cond...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 41 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
08.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202400348 |
Cover
Abstract | Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic conductive gradients and lithiophilicity is prepared by layer‐by‐layer assembly for dendrite‐free Li anodes. Gradient LiF deriving from different amount of V2CTx endows a good ionic conductive gradient; while, MoO3 is regarded as a spacer to avoid the restacking of V2CTx, increasing space for Li deposition. The dual conductive gradients effectively optimize the current density and Li+ flux distribution at the bottom, achieving fast reduction of Li+ and a “bottom–up” Li deposition mode. Meanwhile, the lithiophilic V2CTx and MoO3 guide the homogeneous Li growth. As a result, the symmetrical half‐cells based on DG‐V2CTx/MoO3@Li anodes conduct 700 h at 5 mAh cm−2 and 20 mA cm−2. The DG‐V2CTx/MoO3@Li||LiFePO4 full‐cells maintain a capacity retention of 85.4% after 1350 cycles at 2 C. Remarkably, the DG‐V2CTx/MoO3@Li||LiNi0.6Co0.2Mn0.2O2 full‐cells can run 150 cycles with 80.6% capacity retention even at harsh conditions. The well‐adjusted materials and structures with both dual conductive gradients and lithiophilic properties will bring inspiration for novel material design of other metal batteries.
The electronic/ionic dual conductive gradients of the DG‐V2CTx/MoO3 promote the uniform distribution of the current density and Li+ flux at the bottom of the anodes, enabling preferential reduction of Li+ at the bottom layer and achieving “bottom–up” deposition mode; while, lithiophilic V2CTx and MoO3 can induce the uniform nucleation and growth of Li at high rate. |
---|---|
AbstractList | Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic conductive gradients and lithiophilicity is prepared by layer‐by‐layer assembly for dendrite‐free Li anodes. Gradient LiF deriving from different amount of V2CTx endows a good ionic conductive gradient; while, MoO3 is regarded as a spacer to avoid the restacking of V2CTx, increasing space for Li deposition. The dual conductive gradients effectively optimize the current density and Li+ flux distribution at the bottom, achieving fast reduction of Li+ and a “bottom–up” Li deposition mode. Meanwhile, the lithiophilic V2CTx and MoO3 guide the homogeneous Li growth. As a result, the symmetrical half‐cells based on DG‐V2CTx/MoO3@Li anodes conduct 700 h at 5 mAh cm−2 and 20 mA cm−2. The DG‐V2CTx/MoO3@Li||LiFePO4 full‐cells maintain a capacity retention of 85.4% after 1350 cycles at 2 C. Remarkably, the DG‐V2CTx/MoO3@Li||LiNi0.6Co0.2Mn0.2O2 full‐cells can run 150 cycles with 80.6% capacity retention even at harsh conditions. The well‐adjusted materials and structures with both dual conductive gradients and lithiophilic properties will bring inspiration for novel material design of other metal batteries. Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li dendrite growth, especially at a high rate. Herein, a dual conductive gradient V2CTx/MoO3 (DG‐V2CTx/MoO3) host that integrates electronic/ionic conductive gradients and lithiophilicity is prepared by layer‐by‐layer assembly for dendrite‐free Li anodes. Gradient LiF deriving from different amount of V2CTx endows a good ionic conductive gradient; while, MoO3 is regarded as a spacer to avoid the restacking of V2CTx, increasing space for Li deposition. The dual conductive gradients effectively optimize the current density and Li+ flux distribution at the bottom, achieving fast reduction of Li+ and a “bottom–up” Li deposition mode. Meanwhile, the lithiophilic V2CTx and MoO3 guide the homogeneous Li growth. As a result, the symmetrical half‐cells based on DG‐V2CTx/MoO3@Li anodes conduct 700 h at 5 mAh cm−2 and 20 mA cm−2. The DG‐V2CTx/MoO3@Li||LiFePO4 full‐cells maintain a capacity retention of 85.4% after 1350 cycles at 2 C. Remarkably, the DG‐V2CTx/MoO3@Li||LiNi0.6Co0.2Mn0.2O2 full‐cells can run 150 cycles with 80.6% capacity retention even at harsh conditions. The well‐adjusted materials and structures with both dual conductive gradients and lithiophilic properties will bring inspiration for novel material design of other metal batteries. The electronic/ionic dual conductive gradients of the DG‐V2CTx/MoO3 promote the uniform distribution of the current density and Li+ flux at the bottom of the anodes, enabling preferential reduction of Li+ at the bottom layer and achieving “bottom–up” deposition mode; while, lithiophilic V2CTx and MoO3 can induce the uniform nucleation and growth of Li at high rate. |
Author | Chen, Zhiwei Zhang, Xiao Xu, Jianguang Luo, Juhua Wang, Jinshan He, Meng Yao, Wei Cheng, Xin‐Bing Chen, Chi |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-9327-5403 surname: Yao fullname: Yao, Wei email: weiyao@ycit.edu.cn organization: Yancheng Institute of Technology – sequence: 2 givenname: Zhiwei surname: Chen fullname: Chen, Zhiwei organization: Yancheng Institute of Technology – sequence: 3 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Yancheng Institute of Technology – sequence: 4 givenname: Juhua surname: Luo fullname: Luo, Juhua organization: Yancheng Institute of Technology – sequence: 5 givenname: Jinshan surname: Wang fullname: Wang, Jinshan organization: Yancheng Institute of Technology – sequence: 6 givenname: Meng surname: He fullname: He, Meng organization: Yancheng Institute of Technology – sequence: 7 givenname: Chi surname: Chen fullname: Chen, Chi organization: Chinese Academy of Sciences – sequence: 8 givenname: Xin‐Bing surname: Cheng fullname: Cheng, Xin‐Bing email: chengxb@seu.edu.cn organization: Tianmu Lake Institute of Advanced Energy Storage Technologies – sequence: 9 givenname: Jianguang surname: Xu fullname: Xu, Jianguang email: xujg@sspu.edu.cn organization: Shanghai Polytechnic University |
BookMark | eNo9kMtuwjAQRa2KSgXabdeWug74EZxkicJTAiFVUHVnOY7TGIU4dZxSdv2EfmO_pKFUbObOaO7MlU4PdEpTKgAeMRpghMhQpNlhQBDxEaJ-eAO6mGHmUUTCzrXHr3egV9d7hHAQUL8Ljivtcm2qXBdawhcSbz-Ha7OhcGFqV8Nju4XTQklnTanlcHmucNKIAsamTBvp9IeCcytSrcrWnxkLd4WzItdv-c_X97NwCv5FNAe4Vq69G5cmVfU9uM1EUauHf-2D3Wy6jRfeajNfxuOVV5GAhl7EpK9INopQwvyIJTiIiBAYyyQUVKqMKl8Q2ioLJMZMpCFSwShIEVIiYVTRPni6_K2seW9U7fjeNLZsIznFuOXkI8JaV3RxHXWhTryy-iDsiWPEz2T5mSy_kuXjyWx9negvevNydQ |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202400348 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202400348 |
Genre | article |
GrantInformation_xml | – fundername: Shanghai Local Capacity Building Program funderid: 23010500700 – fundername: National Natural Science Foundation of China funderid: 51602277; 21671167 – fundername: Jiangsu Provincial Key Laboratory of Eco‐Environmental Materials – fundername: Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education funderid: PEBM202106 – fundername: Project of Shanghai Municipal Science and Technology Commission funderid: 22DZ2291100 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 1OB 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-p2738-96c4e2f590b6496b1792aa11cb8a3cef3e4a23ef367c116ad80e757d00eab63e3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 04:23:07 EDT 2025 Wed Jan 22 17:14:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2738-96c4e2f590b6496b1792aa11cb8a3cef3e4a23ef367c116ad80e757d00eab63e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9327-5403 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adfm.202400348 |
PQID | 3113484026 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3113484026 wiley_primary_10_1002_adfm_202400348_ADFM202400348 |
PublicationCentury | 2000 |
PublicationDate | October 8, 2024 |
PublicationDateYYYYMMDD | 2024-10-08 |
PublicationDate_xml | – month: 10 year: 2024 text: October 8, 2024 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023; 76 2023; 35 2023; 36 2023; 33 2023; 34 2023; 6 2023; 8 2019; 13 2019; 15 2020; 16 2020; 56 2022; 21 2022; 22 2022; 28 2023; 80 2018; 9 2020; 5 2021; 31 2021; 34 2018; 1 2023; 451 2022; 32 2022; 924 2023; 613 2023; 938 2012; 22 2021; 9 2023; 10 2019; 9 2023; 57 2023; 58 2023; 14 2023; 18 2022; 93 2023; 15 2022; 51 2017; 27 2023; 563 2023; 442 2023; 446 2022; 47 2023; 642 2022; 41 2020; 32 2021; 13 2020; 30 2022; 61 2022; 5 2023; 632 2020; 26 2022; 97 2022; 429 2022; 10 2021; 495 2018; 12 2022; 16 2022; 18 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 18 year: 2023 publication-title: eTransportation – volume: 446 year: 2023 publication-title: Electrochim. Acta – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 2543 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 41 start-page: 2217 year: 2022 publication-title: Rare Met. – volume: 10 start-page: 7188 year: 2022 publication-title: ACS Sustainable Chem. Eng. – volume: 76 start-page: 631 year: 2023 publication-title: J. Energy Chem. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 16 start-page: 4961 year: 2022 publication-title: Nano Res. – volume: 16 year: 2020 publication-title: Small – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 4529 year: 2023 publication-title: Nanoscale – volume: 12 start-page: 161 year: 2018 publication-title: Energy Storage Mater. – volume: 80 start-page: 207 year: 2023 publication-title: J. Energy Chem. – volume: 642 start-page: 193 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 26 start-page: 250 year: 2020 publication-title: Energy Storage Mater. – volume: 58 start-page: 322 year: 2023 publication-title: Energy Storage Mater. – volume: 495 year: 2021 publication-title: J. Power Sources – volume: 632 start-page: 1 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 21 start-page: 445 year: 2022 publication-title: Nat. Mater. – volume: 924 year: 2022 publication-title: J. Alloys Compd. – volume: 28 year: 2022 publication-title: Chem. ‐ Eur. J. – volume: 93 year: 2022 publication-title: Nano Energy – volume: 5 start-page: 3108 year: 2020 publication-title: ACS Energy Lett. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 613 year: 2023 publication-title: Appl. Surf. Sci. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 97 year: 2022 publication-title: Nano Energy – volume: 14 start-page: 191 year: 2023 publication-title: Micromachines – volume: 15 year: 2019 publication-title: Small – volume: 57 start-page: 249 year: 2023 publication-title: Energy Storage Mater. – volume: 6 year: 2023 publication-title: Energy Environ. Mater. – volume: 51 start-page: 660 year: 2022 publication-title: Energy Storage Mater. – volume: 563 year: 2023 publication-title: J. Power Sources – volume: 8 start-page: 179 year: 2023 publication-title: ACS Energy Lett. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 56 start-page: 6444 year: 2020 publication-title: Chem. Commun. – volume: 34 start-page: 499 year: 2021 publication-title: Chem. Mater. – volume: 15 start-page: 3089 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 442 year: 2023 publication-title: Electrochim. Acta – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 34 year: 2023 publication-title: Chin. Chem. Lett. – volume: 47 start-page: 620 year: 2022 publication-title: Energy Storage Mater. – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 51 start-page: 4248 year: 2022 publication-title: J. Electron. Mater. – volume: 47 start-page: 482 year: 2022 publication-title: Energy Storage Mater. – volume: 22 start-page: 1145 year: 2012 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 4341 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 36 year: 2023 publication-title: Adv. Mater. – volume: 22 start-page: 4861 year: 2022 publication-title: Nano Lett. – volume: 938 year: 2023 publication-title: J. Alloys Compd. |
SSID | ssj0017734 |
Score | 2.600781 |
Snippet | Lithium (Li) metal is considered as a promising anode material for high‐energy batteries; yet, its practical application is hindered by uncontrolled Li... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anodes Deposition dual conductive gradients Electrode materials high rate Li metal anodes Lithium Molybdenum trioxide V2CTx “bottom–up” deposition |
Title | Lithiophilic V2CTx/MoO3 Hosts with Electronic/Ionic Dual Conductive Gradients for Ultrahigh‐Rate Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202400348 https://www.proquest.com/docview/3113484026 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1616-301X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1616-3028 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017734 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgRywF-cA1TWxnPVZdKIiCVLWot8hOHFoBSdUkAnHiE_hGvoRx0oaWI1yyKHHijD2T5_HMM0KXlEURoGKpEZMX3iqqAaiXWgB9R7jcNaShEpz7d3ZvZN6MrfFKFn_JD1E53JRmFPZaKTgXqf5DGsrDSGWSqxhIZqpsX8KsYp52UPFHEccpp5VtogK8yHjJ2mhQfb34Gr5cRanFb6a7g_iygmV0yVMjz0QjeP_F3fifL9hF2wsMiptlp9lDGzLeR1srzIQH6PV2mk2myUy5WwL8QFvDN72f3DPcS9Isxcp7izvVCjr6tdridg5PbSWxopAFI4qv5kU8GdwPyBiPnjMwbNPHydfH5wAQLi5ekb_gvsxUbeIklOkhGnU7w1ZPW6zRoM1UUo_m2YEpaWR5hrBNzxag35RzQgJoaBbIiEmTUwZ72wkIsXkIre9YTmgYkgubSXaEanESy2OEKXVdK4wU5ndMYXCP09AMBOFeFAoYBZ2g-rKN_IWipT4jBGQHg2C4TAth-7OSpsMvCZmpr8TsV2L2m-1uvzo7_UuhM7SpjstIwDqqZfNcngM0ycRF0f2-AaL63Rk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjA9fQ2E6zHFFLKdAUCbWIW2QnDq2ApKKpQJz4BL6RL2EmaQPlCJdEWZw44xnneTzzTMgxF3EMqFgbzJK5t4obAOq1EYLuKFe6pjYxwdlv282udXlXnUQTYi5MwQ9ROtzQMvL-Gg0cHdKVb9ZQGcWYSo5BkMJyZ8k8TtKhbdZvSgYp5jjFxLLNMMSL3U14G01emS4_hTB_4tT8R9NYIWpSxSK-5OFklKmT8O0Xe-O_vmGVLI9hKD0t9GaNzOhknSz9ICfcIC-tftbrpwP0uIT0ltc6rxU_vRa0mQ6zIUUHLj0rF9GpXOCW1kfw1FqaIIss9KP0_DkPKYP7ARzT7mMGfVv_vvf5_nEDIJfmrxg9UV9nWJskjfRwk3QbZ51a0xgv02AMMK_H8OzQ0jyueqayLc9WYOJcSsZCaGsR6lhoS3IBe9sJGbNlBArgVJ3INLVUttBii8wlaaK3CeXcdatRjLDfsZQpPckjK1RMenGkYCC0Q_YnjRSMbW0YCMZAdjAOhss8l3YwKJg6goKTmQco5qAUc3Bab_jl0e5fCh2RhWbHbwWti_bVHlnE80Vg4D6Zy55H-gCQSqYOc138AoL24TU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdsSOD1xD46VOckQtpYUWEGpRb5GdOFABSUVTgTjxCXwjX8I4aUPLES6Jsjhxxp7x82TmGaFjyqIIULG2CJeZt4paAOq1FUDfUa50bW2bBOfWlah3-EW33J3I4s_5IQqHm9GMzF4bBe-HUemHNFSGkckkNzGQjLuzaJ4LmGIZWHRbEEgRx8n_KwtiIrxId0zbaNPSdPkpgDkJU7NxpraC5LiGeXjJ48kwVSfB-y_yxv98wipaHoFQfJr3mjU0o-N1tDRBTbiBXpu99KGX9I2_JcB3tNJ-K7WSa4brySAdYOO-xWfFEjqlhtni6hCeWkliwyELVhSfv2QBZXA_QGPceUrBsvXuH74-Pm8B4uLsFcNn3NKpqU2chHqwiTq1s3albo0WabD6JqvH8kTANY3Knq0E94QCBadSEhJAS7NAR0xzSRnshRMQImQIze-UndC2tVSCabaF5uIk1tsIU-q65TAyoN_hypaepCEPFJFeFCqYBu2g_XEb-SNNG_iMEJAdzILhMs2E7fdzng4_Z2SmvhGzX4jZP63WWsXR7l8KHaGFm2rNbzauLvfQojmdRwXuo7n0ZagPAKak6jDrid_5eN_k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+V2CTx%2FMoO3+Hosts+with+Electronic%2FIonic+Dual+Conductive+Gradients+for+Ultrahigh%E2%80%90Rate+Lithium+Metal+Anodes&rft.jtitle=Advanced+functional+materials&rft.au=Yao%2C+Wei&rft.au=Chen%2C+Zhiwei&rft.au=Zhang%2C+Xiao&rft.au=Luo%2C+Juhua&rft.date=2024-10-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=41&rft_id=info:doi/10.1002%2Fadfm.202400348&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |