Electronic Properties of Defective MoS2 Monolayers Subject to Mechanical Deformations: A First‐Principles Approach
Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in various fields of science and technology, such as nanoelectronics and optoelectronics. These MLs can undergo strong elastic deformations, up to a...
Saved in:
Published in | physica status solidi (b) Vol. 257; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0370-1972 1521-3951 |
DOI | 10.1002/pssb.201900541 |
Cover
Abstract | Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in various fields of science and technology, such as nanoelectronics and optoelectronics. These MLs can undergo strong elastic deformations, up to about 10%, without any bond breaking. Moreover, the electronic structure and transport properties, which define the performance of these TMD MLs in nanoelectronic devices, can be strongly affected by the presence of point defects, which are often present in the synthetic samples. Thus, it is important to understand both effects on the electronic properties of such MLs. Herein, the electronic structure and energetic properties of defective MoS2 MLs are investigated as subject to various strains, using density functional theory simulations. The results indicate that strain leads to strong modifications of the defect levels inside the bandgap and their orbital characteristics. Strain also splits the degenerate defect levels up to an amount of 450 meV, proposing novel applications.
Applying first‐principles calculations, the influence of four different strains on the properties of the MoS2 defective monolayers (MLs) is studied. Formation energies are strongly tuned via strain. Breaking the symmetry of such MLs leads to degeneracy splitting of the defect levels, ranging from a few meV to more than 400 meV, depending on the point vacancy and type of strain. |
---|---|
AbstractList | Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in various fields of science and technology, such as nanoelectronics and optoelectronics. These MLs can undergo strong elastic deformations, up to about 10%, without any bond breaking. Moreover, the electronic structure and transport properties, which define the performance of these TMD MLs in nanoelectronic devices, can be strongly affected by the presence of point defects, which are often present in the synthetic samples. Thus, it is important to understand both effects on the electronic properties of such MLs. Herein, the electronic structure and energetic properties of defective MoS2 MLs are investigated as subject to various strains, using density functional theory simulations. The results indicate that strain leads to strong modifications of the defect levels inside the bandgap and their orbital characteristics. Strain also splits the degenerate defect levels up to an amount of 450 meV, proposing novel applications.
Applying first‐principles calculations, the influence of four different strains on the properties of the MoS2 defective monolayers (MLs) is studied. Formation energies are strongly tuned via strain. Breaking the symmetry of such MLs leads to degeneracy splitting of the defect levels, ranging from a few meV to more than 400 meV, depending on the point vacancy and type of strain. |
Author | Frauenheim, Thomas Kuc, Agnieszka-Beata Bahmani, Mohammad Lorke, Michael Faghihnasiri, Mahdi |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0001-7277-648X surname: Bahmani fullname: Bahmani, Mohammad email: mbahmani@uni-bremen.de organization: Bremen University – sequence: 2 givenname: Mahdi surname: Faghihnasiri fullname: Faghihnasiri, Mahdi organization: Nano Research and Training Center – sequence: 3 givenname: Michael surname: Lorke fullname: Lorke, Michael email: mlorke@itp.uni-bremen.de organization: Bremen University – sequence: 4 givenname: Agnieszka-Beata surname: Kuc fullname: Kuc, Agnieszka-Beata organization: Jacobs University Bremen – sequence: 5 givenname: Thomas surname: Frauenheim fullname: Frauenheim, Thomas organization: Bremen University |
BookMark | eNo9kMFOwzAQRC1UJNrClbN_IGVtJ3HDrZQWkFpRKXCOHHejukpjyw6g3PoJfCNfQipQL7Mazewc3ogMGtsgIbcMJgyA37kQygkHlgEkMbsgQ5ZwFoksYQMyBCEhYpnkV2QUwh4AJBNsSNpFjbr1tjGabrx16FuDgdqKPmLVJ-YT6drmvJfG1qpDH2j-Ue77iLaWrlHvVP-r6lPf-oNqjW3CPZ3RpfGh_Tl-b7xptHF1vzpzzluld9fkslJ1wJv_Oybvy8Xb_DlavT69zGeryHEpWBSLMimrNAWpqnSaxAipTFEqoTlmQgrgXOoYYNp3RKpBVrrcMpQg9BYx1mJMsr_dL1NjVzhvDsp3BYPiBKw4ASvOwIpNnj-cnfgFG8JmCQ |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P |
DOI | 10.1002/pssb.201900541 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3951 |
EndPage | n/a |
ExternalDocumentID | PSSB201900541 |
Genre | article |
GrantInformation_xml | – fundername: DAAD – fundername: DFG |
GroupedDBID | .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB AUFTA AZBYB AZFZN AZVAB BAFTC BHBCM BMNLL BMXJE BNHUX BROTX BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FEDTE G.N GNP GODZA GYQRN H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SAMSI W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT |
ID | FETCH-LOGICAL-p2731-43b5bf6607af6854e0676e7a3c2e93730227c4008f6636c07fcbd1e703cdee4c3 |
IEDL.DBID | DR2 |
ISSN | 0370-1972 |
IngestDate | Wed Jan 22 16:33:41 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2731-43b5bf6607af6854e0676e7a3c2e93730227c4008f6636c07fcbd1e703cdee4c3 |
ORCID | 0000-0001-7277-648X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201900541 |
PageCount | 9 |
ParticipantIDs | wiley_primary_10_1002_pssb_201900541_PSSB201900541 |
PublicationCentury | 2000 |
PublicationDate | May 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | physica status solidi (b) |
PublicationYear | 2020 |
References | 2017; 119 2010; 10 2002; 14 2017; 8 2018; 121 2013; 3 2017; 4 2010; 105 2019; 11 2019; 10 2017; 46 2019; 19 2014; 25 2017; 110 2013; 7 2017; 9 2019; 123 1996; 77 2014; 526 2018; 9 2018; 2 2018; 5 2013; 13 1991; 43 2005; 102 2015; 651 2019; 27 2014; 14 2015; 91 2014; 9 2014; 8 2012; 24 2014; 7 2015; 17 2015; 6 2015; 5 2019; 3 2014; 90 2013; 88 2013; 87 2015; 10 2011; 83 2016; 10 2016; 95 2015; 527 2017; 29 1996; 14 2011; 6 2016; 16 2016; 59 2011; 5 2008; 93 1996; 53 2017; 95 2017; 96 2015; 27 2016; 3 2017; 11 2017; 13 2015; 119 2012; 6 2012; 7 2016; 27 2018; 10 2012; 86 |
References_xml | – volume: 9 start-page: 024009 year: 2018 publication-title: Phys. Rev. Appl. – volume: 5 start-page: 9703 year: 2011 publication-title: ACS Nano – volume: 27 start-page: 8 year: 2019 publication-title: Mater. Today – volume: 25 start-page: 375703 year: 2014 publication-title: Nanotechnology – volume: 526 start-page: 347 year: 2014 publication-title: Ann. Phys. (Berlin) – volume: 527 start-page: 27 year: 2015 publication-title: Ann. Phys. (Berlin) – volume: 3 start-page: 13 year: 2019 publication-title: npj 2D Mater. Appl. – volume: 7 start-page: 2898 year: 2013 publication-title: ACS Nano – volume: 10 start-page: 2755 year: 2019 publication-title: Nat. Commun. – volume: 651 start-page: 143 year: 2015 publication-title: J. Alloys Compd. – volume: 43 start-page: 1993 year: 1991 publication-title: Phys. Rev. B – volume: 8 start-page: 1102 year: 2014 publication-title: ACS Nano – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 1603994 year: 2017 publication-title: Small – volume: 119 start-page: 2822 year: 2015 publication-title: J. Phys. Chem. C – volume: 27 start-page: 105702 year: 2016 publication-title: Nanotechnology – volume: 10 start-page: 216 year: 2016 publication-title: Nat. Photonics – volume: 11 start-page: 10068 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 93 start-page: 102101 year: 2008 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 2745 year: 2002 publication-title: J. Phys.: Condens. Matter – volume: 8 start-page: 608 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 011007 year: 2018 publication-title: 2D Mater. – volume: 86 start-page: 241202 year: 2012 publication-title: Phys. Rev. B – volume: 83 start-page: 245213 year: 2011 publication-title: Phys. Rev. B – volume: 8 start-page: 2880 year: 2014 publication-title: ACS Nano – volume: 5 start-page: 20538 year: 2015 publication-title: RSC Adv. – volume: 59 start-page: 182 year: 2016 publication-title: Sci. China Mater. – volume: 43 start-page: 8861 year: 1991 publication-title: Phys. Rev. B – volume: 13 start-page: 1416 year: 2013 publication-title: Nano Lett. – volume: 95 start-page: 221 year: 2016 publication-title: Semicond. Semimet. – volume: 3 start-page: 2657 year: 2013 publication-title: Sci. Rep. – volume: 11 start-page: 10273 year: 2017 publication-title: ACS Nano – volume: 105 start-page: 136805 year: 2010 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 768 year: 2014 publication-title: Nat. Nanotechnol. – volume: 91 start-page: 125304 year: 2015 publication-title: Phys. Rev. B – volume: 17 start-page: 6700 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 6 start-page: 5449 year: 2012 publication-title: ACS Nano – volume: 90 start-page: 041402 year: 2014 publication-title: Phys. Rev. B – volume: 96 start-page: 045431 year: 2017 publication-title: Phys. Rev. B – volume: 29 start-page: 1605598 year: 2017 publication-title: Adv. Mater. – volume: 121 start-page: 167402 year: 2018 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 3182 year: 2019 publication-title: Nano Lett. – volume: 13 start-page: 2615 year: 2013 publication-title: Nano Lett. – volume: 88 start-page: 075409 year: 2013 publication-title: Phys. Rev. B – volume: 5 start-page: 077182 year: 2015 publication-title: AIP Adv. – volume: 88 start-page: 245440 year: 2013 publication-title: Phys. Rev. B – volume: 6 start-page: 6293 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 2234 year: 2016 publication-title: Nano Lett. – volume: 46 start-page: 4387 year: 2017 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 497 year: 2015 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 572 year: 2014 publication-title: Nano Res. – volume: 110 start-page: 161604 year: 2017 publication-title: Appl. Phys. Lett. – volume: 123 start-page: 076801 year: 2019 publication-title: Phys. Rev. Lett. – volume: 119 start-page: 077402 year: 2017 publication-title: Phys. Rev. Lett. – volume: 24 start-page: 772 year: 2012 publication-title: Adv. Mater. – volume: 2 start-page: 084002 year: 2018 publication-title: Phys. Rev. Mater. – volume: 24 start-page: 2320 year: 2012 publication-title: Adv. Mater. – volume: 10 start-page: 5419 year: 2016 publication-title: ACS Nano – volume: 95 start-page: 014106 year: 2017 publication-title: Phys. Rev. B – volume: 10 start-page: 1271 year: 2010 publication-title: Nano Lett. – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotechnol. – volume: 14 start-page: 6165 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 11027 year: 2017 publication-title: Nanoscale – volume: 3 start-page: 022002 year: 2016 publication-title: 2D Mater. – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graphics – volume: 10 start-page: 17924 year: 2018 publication-title: Nanoscale – volume: 53 start-page: R10441 year: 1996 publication-title: Phys. Rev. B – volume: 14 start-page: 3743 year: 2014 publication-title: Nano Lett. – volume: 87 start-page: 235434 year: 2013 publication-title: Phys. Rev. B – volume: 119 start-page: 21227 year: 2015 publication-title: J. Phys. Chem. C – volume: 27 start-page: 313201 year: 2015 publication-title: J. Phys.: Condens. Matter – volume: 10 start-page: 151 year: 2015 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 866 year: 2012 publication-title: Nat. Photonics – volume: 88 start-page: 035301 year: 2013 publication-title: Phys. Rev. B – volume: 102 start-page: 10451 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 025078 year: 2017 publication-title: 2D Mater. |
SSID | ssj0007131 ssj0047196 |
Score | 2.367859 |
Snippet | Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | 2D materials defects density functional theory calculations electronic structure molybdenum disulfide strain engineering |
Title | Electronic Properties of Defective MoS2 Monolayers Subject to Mechanical Deformations: A First‐Principles Approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201900541 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-3951 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0007131 issn: 0370-1972 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0370-1972 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1521-3951 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047196 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0oxsSL38ZPsgevhbLdttQbCoQYMUQk4dbsDruJMSmElosnf4K_0V_iTAtVPOqlSZtt0253376ZnXnD2DXIsKlDXzgRNCJHTtBO0aEyTsOzEnyACUhKcO4_Br2RvB_74x9Z_IU-ROlwo5mR4zVNcKXT-rdo6CxNNYVmRcQ6yP5peH6-T_v0rR-FFlgZ8IEoHBU7l6HrULGtlYSjK-rrz1rnqflC091javWKRXzJa22R6Rq8_VJv_M837LPdJQvlrWLYHLANkxyy7TwaFNIjlnXK4jh8QN76Ocmu8qnlbWMLhOT96VDgIUHTmFg7RwQilw7PprxvKJ2Y_j61X2VHpje8xbsvyDY_3z8GKx9_yltLVfNjNup2nu96zrI8gzNDzoOWp6d9bYPADZUNmr40uPAFJlQeCIOkxyNxQkCIaGIbLwA3tKAnDYMQAxNjJHgnrJJME3PKuLXIPBVehqYrFUCkAm0slWO3XqgCccZE3o3xrJDgiAuxZRFTB8ZlB8aD4fC2PDv_y00XbEeQRZ2HNF6ySjZfmCukHZmusk0hB1W21Wr3H4bVfKB9AawV1HY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUQCMGC-BTfeGCNmjqOnbAVaFWgqSK1ldii2LEllqRqws5P4DfyS7hLmqCuLJESORls3_O7y907Qu41l4GSPnNC3Q8dnoGfomRqnL5nufa1zjTHAudoKsYL_vrut9mEWAvT6EN0ATe0jBqv0cAxIN37Uw1dlqXC3KwQaQc4QDtcMBc3NuNxB8bgg3UpH4DDYfPvUroOtttqRRxd1tv82CZTrY-a0SE5WHNEOmgW9YhsmfyY7Na5mro8IdWwa11DY4ylr1AUlRaWPhvb4BeNihmDSw6OK3JqCviAARdaFTQyWOyLa4Pj29rF8oEO6OgDuODP13fcRuBLOlhrjp-SxWg4fxo76-YJzhIYCfiFnvKVFcKVqRWBzw0cS8LI1NPMACXxUDpQgwEHMMYT2pVWq6xvAAB0ZgzX3hnZzovcnBNqLfDCFB7rwOWp1mEqlLHYLN16MhXsgrB6tpJlI5CRNFLILMFJTbpJTeLZ7LG7u_zPS3dkbzyPJsnkZfp2RfYZ-r518uE12a5Wn-YGCEKlbust8At_NrQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YjMaLb-PbPXgtlHa7pd5QIPiAEJGEW9Od7ibGBAgtF0_-BH-jv8SZFop41EuTNtumu92d_b7pzDeMXYPwa8r3HCuAamCJGHmK8iNtVV0jwAOIQVCCc6cr2wPxMPSGP7L4c32IwuFGKyOz17TAJ7GpLEVDJ0miKDQrINSB_GddSKRYBIuelwJSSMGKiA80w0H-69K3Laq2tdBwtJ3K6sNWgWq207R2WLR4xzzA5K08S1UZ3n_JN_6nE7tsew5DeT2fN3tsTY_22UYWDgrJAUubRXUc3iN3_ZR0V_nY8IY2uYnknXHfwcMIuTHBdo4miHw6PB3zjqZ8Yvr81H6RHpnc8DpvvSLc_Pr47C2c_Amvz2XND9mg1Xy5a1vz-gzWBEEPUk9XecpIafuRkTVPaNz5pPYjFxyNqMcldUJAG1HDNq4E2zeg4qpGGwOx1gLcI1YajUf6mHFjEHpGeBlqtogAgkgqbageu3H9SDonzMmGMZzkGhxhrrbshDSAYTGAYa_fvy3OTv9y0xXb7DVa4dN99_GMbTnErrPwxnNWSqczfYEQJFWX2Sz7BvR71NY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+Properties+of+Defective+MoS2+Monolayers+Subject+to+Mechanical+Deformations%3A+A+First%E2%80%90Principles+Approach&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Bahmani%2C+Mohammad&rft.au=Faghihnasiri%2C+Mahdi&rft.au=Lorke%2C+Michael&rft.au=Kuc%2C+Agnieszka-Beata&rft.date=2020-05-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=257&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssb.201900541&rft.externalDBID=10.1002%252Fpssb.201900541&rft.externalDocID=PSSB201900541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon |