Electronic Properties of Defective MoS2 Monolayers Subject to Mechanical Deformations: A First‐Principles Approach

Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in various fields of science and technology, such as nanoelectronics and optoelectronics. These MLs can undergo strong elastic deformations, up to a...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 257; no. 5
Main Authors Bahmani, Mohammad, Faghihnasiri, Mahdi, Lorke, Michael, Kuc, Agnieszka-Beata, Frauenheim, Thomas
Format Journal Article
LanguageEnglish
Published 01.05.2020
Subjects
Online AccessGet full text
ISSN0370-1972
1521-3951
DOI10.1002/pssb.201900541

Cover

Abstract Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in various fields of science and technology, such as nanoelectronics and optoelectronics. These MLs can undergo strong elastic deformations, up to about 10%, without any bond breaking. Moreover, the electronic structure and transport properties, which define the performance of these TMD MLs in nanoelectronic devices, can be strongly affected by the presence of point defects, which are often present in the synthetic samples. Thus, it is important to understand both effects on the electronic properties of such MLs. Herein, the electronic structure and energetic properties of defective MoS2 MLs are investigated as subject to various strains, using density functional theory simulations. The results indicate that strain leads to strong modifications of the defect levels inside the bandgap and their orbital characteristics. Strain also splits the degenerate defect levels up to an amount of 450 meV, proposing novel applications. Applying first‐principles calculations, the influence of four different strains on the properties of the MoS2 defective monolayers (MLs) is studied. Formation energies are strongly tuned via strain. Breaking the symmetry of such MLs leads to degeneracy splitting of the defect levels, ranging from a few meV to more than 400 meV, depending on the point vacancy and type of strain.
AbstractList Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in various fields of science and technology, such as nanoelectronics and optoelectronics. These MLs can undergo strong elastic deformations, up to about 10%, without any bond breaking. Moreover, the electronic structure and transport properties, which define the performance of these TMD MLs in nanoelectronic devices, can be strongly affected by the presence of point defects, which are often present in the synthetic samples. Thus, it is important to understand both effects on the electronic properties of such MLs. Herein, the electronic structure and energetic properties of defective MoS2 MLs are investigated as subject to various strains, using density functional theory simulations. The results indicate that strain leads to strong modifications of the defect levels inside the bandgap and their orbital characteristics. Strain also splits the degenerate defect levels up to an amount of 450 meV, proposing novel applications. Applying first‐principles calculations, the influence of four different strains on the properties of the MoS2 defective monolayers (MLs) is studied. Formation energies are strongly tuned via strain. Breaking the symmetry of such MLs leads to degeneracy splitting of the defect levels, ranging from a few meV to more than 400 meV, depending on the point vacancy and type of strain.
Author Frauenheim, Thomas
Kuc, Agnieszka-Beata
Bahmani, Mohammad
Lorke, Michael
Faghihnasiri, Mahdi
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0001-7277-648X
  surname: Bahmani
  fullname: Bahmani, Mohammad
  email: mbahmani@uni-bremen.de
  organization: Bremen University
– sequence: 2
  givenname: Mahdi
  surname: Faghihnasiri
  fullname: Faghihnasiri, Mahdi
  organization: Nano Research and Training Center
– sequence: 3
  givenname: Michael
  surname: Lorke
  fullname: Lorke, Michael
  email: mlorke@itp.uni-bremen.de
  organization: Bremen University
– sequence: 4
  givenname: Agnieszka-Beata
  surname: Kuc
  fullname: Kuc, Agnieszka-Beata
  organization: Jacobs University Bremen
– sequence: 5
  givenname: Thomas
  surname: Frauenheim
  fullname: Frauenheim, Thomas
  organization: Bremen University
BookMark eNo9kMFOwzAQRC1UJNrClbN_IGVtJ3HDrZQWkFpRKXCOHHejukpjyw6g3PoJfCNfQipQL7Mazewc3ogMGtsgIbcMJgyA37kQygkHlgEkMbsgQ5ZwFoksYQMyBCEhYpnkV2QUwh4AJBNsSNpFjbr1tjGabrx16FuDgdqKPmLVJ-YT6drmvJfG1qpDH2j-Ue77iLaWrlHvVP-r6lPf-oNqjW3CPZ3RpfGh_Tl-b7xptHF1vzpzzluld9fkslJ1wJv_Oybvy8Xb_DlavT69zGeryHEpWBSLMimrNAWpqnSaxAipTFEqoTlmQgrgXOoYYNp3RKpBVrrcMpQg9BYx1mJMsr_dL1NjVzhvDsp3BYPiBKw4ASvOwIpNnj-cnfgFG8JmCQ
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
DOI 10.1002/pssb.201900541
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage n/a
ExternalDocumentID PSSB201900541
Genre article
GrantInformation_xml – fundername: DAAD
– fundername: DFG
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-p2731-43b5bf6607af6854e0676e7a3c2e93730227c4008f6636c07fcbd1e703cdee4c3
IEDL.DBID DR2
ISSN 0370-1972
IngestDate Wed Jan 22 16:33:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2731-43b5bf6607af6854e0676e7a3c2e93730227c4008f6636c07fcbd1e703cdee4c3
ORCID 0000-0001-7277-648X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201900541
PageCount 9
ParticipantIDs wiley_primary_10_1002_pssb_201900541_PSSB201900541
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle physica status solidi (b)
PublicationYear 2020
References 2017; 119
2010; 10
2002; 14
2017; 8
2018; 121
2013; 3
2017; 4
2010; 105
2019; 11
2019; 10
2017; 46
2019; 19
2014; 25
2017; 110
2013; 7
2017; 9
2019; 123
1996; 77
2014; 526
2018; 9
2018; 2
2018; 5
2013; 13
1991; 43
2005; 102
2015; 651
2019; 27
2014; 14
2015; 91
2014; 9
2014; 8
2012; 24
2014; 7
2015; 17
2015; 6
2015; 5
2019; 3
2014; 90
2013; 88
2013; 87
2015; 10
2011; 83
2016; 10
2016; 95
2015; 527
2017; 29
1996; 14
2011; 6
2016; 16
2016; 59
2011; 5
2008; 93
1996; 53
2017; 95
2017; 96
2015; 27
2016; 3
2017; 11
2017; 13
2015; 119
2012; 6
2012; 7
2016; 27
2018; 10
2012; 86
References_xml – volume: 9
  start-page: 024009
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 5
  start-page: 9703
  year: 2011
  publication-title: ACS Nano
– volume: 27
  start-page: 8
  year: 2019
  publication-title: Mater. Today
– volume: 25
  start-page: 375703
  year: 2014
  publication-title: Nanotechnology
– volume: 526
  start-page: 347
  year: 2014
  publication-title: Ann. Phys. (Berlin)
– volume: 527
  start-page: 27
  year: 2015
  publication-title: Ann. Phys. (Berlin)
– volume: 3
  start-page: 13
  year: 2019
  publication-title: npj 2D Mater. Appl.
– volume: 7
  start-page: 2898
  year: 2013
  publication-title: ACS Nano
– volume: 10
  start-page: 2755
  year: 2019
  publication-title: Nat. Commun.
– volume: 651
  start-page: 143
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 43
  start-page: 1993
  year: 1991
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 1102
  year: 2014
  publication-title: ACS Nano
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 1603994
  year: 2017
  publication-title: Small
– volume: 119
  start-page: 2822
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 105702
  year: 2016
  publication-title: Nanotechnology
– volume: 10
  start-page: 216
  year: 2016
  publication-title: Nat. Photonics
– volume: 11
  start-page: 10068
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 93
  start-page: 102101
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 2745
  year: 2002
  publication-title: J. Phys.: Condens. Matter
– volume: 8
  start-page: 608
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 011007
  year: 2018
  publication-title: 2D Mater.
– volume: 86
  start-page: 241202
  year: 2012
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 245213
  year: 2011
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 2880
  year: 2014
  publication-title: ACS Nano
– volume: 5
  start-page: 20538
  year: 2015
  publication-title: RSC Adv.
– volume: 59
  start-page: 182
  year: 2016
  publication-title: Sci. China Mater.
– volume: 43
  start-page: 8861
  year: 1991
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 1416
  year: 2013
  publication-title: Nano Lett.
– volume: 95
  start-page: 221
  year: 2016
  publication-title: Semicond. Semimet.
– volume: 3
  start-page: 2657
  year: 2013
  publication-title: Sci. Rep.
– volume: 11
  start-page: 10273
  year: 2017
  publication-title: ACS Nano
– volume: 105
  start-page: 136805
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 768
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 91
  start-page: 125304
  year: 2015
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 6700
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 5449
  year: 2012
  publication-title: ACS Nano
– volume: 90
  start-page: 041402
  year: 2014
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 045431
  year: 2017
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 1605598
  year: 2017
  publication-title: Adv. Mater.
– volume: 121
  start-page: 167402
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 3182
  year: 2019
  publication-title: Nano Lett.
– volume: 13
  start-page: 2615
  year: 2013
  publication-title: Nano Lett.
– volume: 88
  start-page: 075409
  year: 2013
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 077182
  year: 2015
  publication-title: AIP Adv.
– volume: 88
  start-page: 245440
  year: 2013
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 6293
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 2234
  year: 2016
  publication-title: Nano Lett.
– volume: 46
  start-page: 4387
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 497
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 572
  year: 2014
  publication-title: Nano Res.
– volume: 110
  start-page: 161604
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 123
  start-page: 076801
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 077402
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 772
  year: 2012
  publication-title: Adv. Mater.
– volume: 2
  start-page: 084002
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 24
  start-page: 2320
  year: 2012
  publication-title: Adv. Mater.
– volume: 10
  start-page: 5419
  year: 2016
  publication-title: ACS Nano
– volume: 95
  start-page: 014106
  year: 2017
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 1271
  year: 2010
  publication-title: Nano Lett.
– volume: 6
  start-page: 147
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 6165
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 11027
  year: 2017
  publication-title: Nanoscale
– volume: 3
  start-page: 022002
  year: 2016
  publication-title: 2D Mater.
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graphics
– volume: 10
  start-page: 17924
  year: 2018
  publication-title: Nanoscale
– volume: 53
  start-page: R10441
  year: 1996
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 3743
  year: 2014
  publication-title: Nano Lett.
– volume: 87
  start-page: 235434
  year: 2013
  publication-title: Phys. Rev. B
– volume: 119
  start-page: 21227
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 313201
  year: 2015
  publication-title: J. Phys.: Condens. Matter
– volume: 10
  start-page: 151
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 866
  year: 2012
  publication-title: Nat. Photonics
– volume: 88
  start-page: 035301
  year: 2013
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 10451
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 025078
  year: 2017
  publication-title: 2D Mater.
SSID ssj0007131
ssj0047196
Score 2.367859
Snippet Monolayers (MLs) of group‐6 transition‐metal dichalcogenides (TMDs) are semiconducting 2D materials with direct bandgap, showing promising applications in...
SourceID wiley
SourceType Publisher
SubjectTerms 2D materials
defects
density functional theory calculations
electronic structure
molybdenum disulfide
strain engineering
Title Electronic Properties of Defective MoS2 Monolayers Subject to Mechanical Deformations: A First‐Principles Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201900541
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-3951
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0007131
  issn: 0370-1972
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0370-1972
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3951
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047196
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0oxsSL38ZPsgevhbLdttQbCoQYMUQk4dbsDruJMSmElosnf4K_0V_iTAtVPOqlSZtt0253376ZnXnD2DXIsKlDXzgRNCJHTtBO0aEyTsOzEnyACUhKcO4_Br2RvB_74x9Z_IU-ROlwo5mR4zVNcKXT-rdo6CxNNYVmRcQ6yP5peH6-T_v0rR-FFlgZ8IEoHBU7l6HrULGtlYSjK-rrz1rnqflC091javWKRXzJa22R6Rq8_VJv_M837LPdJQvlrWLYHLANkxyy7TwaFNIjlnXK4jh8QN76Ocmu8qnlbWMLhOT96VDgIUHTmFg7RwQilw7PprxvKJ2Y_j61X2VHpje8xbsvyDY_3z8GKx9_yltLVfNjNup2nu96zrI8gzNDzoOWp6d9bYPADZUNmr40uPAFJlQeCIOkxyNxQkCIaGIbLwA3tKAnDYMQAxNjJHgnrJJME3PKuLXIPBVehqYrFUCkAm0slWO3XqgCccZE3o3xrJDgiAuxZRFTB8ZlB8aD4fC2PDv_y00XbEeQRZ2HNF6ySjZfmCukHZmusk0hB1W21Wr3H4bVfKB9AawV1HY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUQCMGC-BTfeGCNmjqOnbAVaFWgqSK1ldii2LEllqRqws5P4DfyS7hLmqCuLJESORls3_O7y907Qu41l4GSPnNC3Q8dnoGfomRqnL5nufa1zjTHAudoKsYL_vrut9mEWAvT6EN0ATe0jBqv0cAxIN37Uw1dlqXC3KwQaQc4QDtcMBc3NuNxB8bgg3UpH4DDYfPvUroOtttqRRxd1tv82CZTrY-a0SE5WHNEOmgW9YhsmfyY7Na5mro8IdWwa11DY4ylr1AUlRaWPhvb4BeNihmDSw6OK3JqCviAARdaFTQyWOyLa4Pj29rF8oEO6OgDuODP13fcRuBLOlhrjp-SxWg4fxo76-YJzhIYCfiFnvKVFcKVqRWBzw0cS8LI1NPMACXxUDpQgwEHMMYT2pVWq6xvAAB0ZgzX3hnZzovcnBNqLfDCFB7rwOWp1mEqlLHYLN16MhXsgrB6tpJlI5CRNFLILMFJTbpJTeLZ7LG7u_zPS3dkbzyPJsnkZfp2RfYZ-r518uE12a5Wn-YGCEKlbust8At_NrQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YjMaLb-PbPXgtlHa7pd5QIPiAEJGEW9Od7ibGBAgtF0_-BH-jv8SZFop41EuTNtumu92d_b7pzDeMXYPwa8r3HCuAamCJGHmK8iNtVV0jwAOIQVCCc6cr2wPxMPSGP7L4c32IwuFGKyOz17TAJ7GpLEVDJ0miKDQrINSB_GddSKRYBIuelwJSSMGKiA80w0H-69K3Laq2tdBwtJ3K6sNWgWq207R2WLR4xzzA5K08S1UZ3n_JN_6nE7tsew5DeT2fN3tsTY_22UYWDgrJAUubRXUc3iN3_ZR0V_nY8IY2uYnknXHfwcMIuTHBdo4miHw6PB3zjqZ8Yvr81H6RHpnc8DpvvSLc_Pr47C2c_Amvz2XND9mg1Xy5a1vz-gzWBEEPUk9XecpIafuRkTVPaNz5pPYjFxyNqMcldUJAG1HDNq4E2zeg4qpGGwOx1gLcI1YajUf6mHFjEHpGeBlqtogAgkgqbageu3H9SDonzMmGMZzkGhxhrrbshDSAYTGAYa_fvy3OTv9y0xXb7DVa4dN99_GMbTnErrPwxnNWSqczfYEQJFWX2Sz7BvR71NY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+Properties+of+Defective+MoS2+Monolayers+Subject+to+Mechanical+Deformations%3A+A+First%E2%80%90Principles+Approach&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Bahmani%2C+Mohammad&rft.au=Faghihnasiri%2C+Mahdi&rft.au=Lorke%2C+Michael&rft.au=Kuc%2C+Agnieszka-Beata&rft.date=2020-05-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=257&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpssb.201900541&rft.externalDBID=10.1002%252Fpssb.201900541&rft.externalDocID=PSSB201900541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon