Design, Synthesis, and Application of a Family of Chiral Non‐C2‐Symmetric NHCs with a Fused Sidechain
Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non‐C2‐Symmetric...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 27; pp. e202508572 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202508572 |
Cover
Abstract | Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non‐C2‐Symmetric NHCs with a fused sidechain, whose precursors are synthesized by a simple five‐step route. The synthesis includes Pd‐catalyzed cross‐coupling or nucleophilic addition/oxidation, chiral phosphoric acid‐catalyzed asymmetric reduction of 2‐aryl‐quinolines, bromination at C8, Buchwald–Hartwig amination, and cyclization with methyl orthoformate. Among nine prepared NHCs, YC‐NHC8 is the optimal ligand for Cu(I)‐catalyzed asymmetric SN2′ silylation, YC‐NHC3 works as the best ligand for Cu(I)‐catalyzed enantioselective conjugate silylation of simple α,β‐unsaturated amides, and YC‐NHC9 serves as the most suitable ligand for copper(I)‐catalyzed asymmetric silylation of azadienes. Remarkably, these three reactions are successfully run under a catalyst loading of 0.1 mol%, indicating that YC‐NHCs may have the potential to be broadly used in efficient asymmetric transition metal catalysis.
A new family of chiral non‐C2‐Symmetric NHCs with a fused sidechain was synthesized and used as efficient ligands in three copper(I)‐catalyzed enantioselective reactions at the catalyst loading of 1 mol%, including SN2′ silylation, conjugate silylation of α,β‐unsaturated amides, and silylation of azadienes. |
---|---|
AbstractList | Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed, yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non-C2-Symmetric NHCs with a fused sidechain, whose precursors are synthesized by a simple five-step route. The synthesis includes Pd-catalyzed cross-coupling or nucleophilic addition/oxidation, chiral phosphoric acid-catalyzed asymmetric reduction of 2-aryl-quinolines, bromination at C8, Buchwald-Hartwig amination, and cyclization with methyl orthoformate. Among nine prepared NHCs, YC-NHC8 is the optimal ligand for Cu(I)-catalyzed asymmetric SN2' silylation, YC-NHC3 works as the best ligand for Cu(I)-catalyzed enantioselective conjugate silylation of simple α,β-unsaturated amides, and YC-NHC9 serves as the most suitable ligand for copper(I)-catalyzed asymmetric silylation of azadienes. Remarkably, these three reactions are successfully run under a catalyst loading of 0.1 mol %, indicating that YC-NHCs may have the potential to be broadly used in efficient asymmetric transition metal catalysis.Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed, yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non-C2-Symmetric NHCs with a fused sidechain, whose precursors are synthesized by a simple five-step route. The synthesis includes Pd-catalyzed cross-coupling or nucleophilic addition/oxidation, chiral phosphoric acid-catalyzed asymmetric reduction of 2-aryl-quinolines, bromination at C8, Buchwald-Hartwig amination, and cyclization with methyl orthoformate. Among nine prepared NHCs, YC-NHC8 is the optimal ligand for Cu(I)-catalyzed asymmetric SN2' silylation, YC-NHC3 works as the best ligand for Cu(I)-catalyzed enantioselective conjugate silylation of simple α,β-unsaturated amides, and YC-NHC9 serves as the most suitable ligand for copper(I)-catalyzed asymmetric silylation of azadienes. Remarkably, these three reactions are successfully run under a catalyst loading of 0.1 mol %, indicating that YC-NHCs may have the potential to be broadly used in efficient asymmetric transition metal catalysis. Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non‐C2‐Symmetric NHCs with a fused sidechain, whose precursors are synthesized by a simple five‐step route. The synthesis includes Pd‐catalyzed cross‐coupling or nucleophilic addition/oxidation, chiral phosphoric acid‐catalyzed asymmetric reduction of 2‐aryl‐quinolines, bromination at C8, Buchwald–Hartwig amination, and cyclization with methyl orthoformate. Among nine prepared NHCs, YC‐NHC8 is the optimal ligand for Cu(I)‐catalyzed asymmetric SN2′ silylation, YC‐NHC3 works as the best ligand for Cu(I)‐catalyzed enantioselective conjugate silylation of simple α,β‐unsaturated amides, and YC‐NHC9 serves as the most suitable ligand for copper(I)‐catalyzed asymmetric silylation of azadienes. Remarkably, these three reactions are successfully run under a catalyst loading of 0.1 mol%, indicating that YC‐NHCs may have the potential to be broadly used in efficient asymmetric transition metal catalysis. Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed yet it is highly necessary to develop new NHCs bearing multiple sites for facile modifications of both electronic nature and steric hindrance. Herein, we uncover a new family of chiral non‐C2‐Symmetric NHCs with a fused sidechain, whose precursors are synthesized by a simple five‐step route. The synthesis includes Pd‐catalyzed cross‐coupling or nucleophilic addition/oxidation, chiral phosphoric acid‐catalyzed asymmetric reduction of 2‐aryl‐quinolines, bromination at C8, Buchwald–Hartwig amination, and cyclization with methyl orthoformate. Among nine prepared NHCs, YC‐NHC8 is the optimal ligand for Cu(I)‐catalyzed asymmetric SN2′ silylation, YC‐NHC3 works as the best ligand for Cu(I)‐catalyzed enantioselective conjugate silylation of simple α,β‐unsaturated amides, and YC‐NHC9 serves as the most suitable ligand for copper(I)‐catalyzed asymmetric silylation of azadienes. Remarkably, these three reactions are successfully run under a catalyst loading of 0.1 mol%, indicating that YC‐NHCs may have the potential to be broadly used in efficient asymmetric transition metal catalysis. A new family of chiral non‐C2‐Symmetric NHCs with a fused sidechain was synthesized and used as efficient ligands in three copper(I)‐catalyzed enantioselective reactions at the catalyst loading of 1 mol%, including SN2′ silylation, conjugate silylation of α,β‐unsaturated amides, and silylation of azadienes. |
Author | Wei, Tian‐Yu Zhang, Qi Yin, Liang Jiang, Jia‐Wei Wei, Zhang‐Yi Tian, Hu Cai, Zhen‐Xi |
Author_xml | – sequence: 1 givenname: Zhen‐Xi surname: Cai fullname: Cai, Zhen‐Xi organization: Chinese Academy of Sciences – sequence: 2 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: Chinese Academy of Sciences – sequence: 3 givenname: Tian‐Yu surname: Wei fullname: Wei, Tian‐Yu organization: Chinese Academy of Sciences – sequence: 4 givenname: Hu surname: Tian fullname: Tian, Hu organization: Chinese Academy of Sciences – sequence: 5 givenname: Jia‐Wei surname: Jiang fullname: Jiang, Jia‐Wei organization: Chinese Academy of Sciences – sequence: 6 givenname: Zhang‐Yi surname: Wei fullname: Wei, Zhang‐Yi organization: Chinese Academy of Sciences – sequence: 7 givenname: Liang surname: Yin fullname: Yin, Liang email: liangyin@sioc.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNpdkL9OwzAQhy1UJNrCymyJhaEB_0liZ6xCC0hVGQqz5TgX6ipxQpyqysYj8Iw8CalAHVjufid9dzp9EzRytQOErim5o4Swe-0s3DHCIiIjwc7QmEaMBlwIPhpyyHkgZEQv0MT73cBLSeIxsg_g7bub4U3vuu2Q_Qxrl-N505TW6M7WDtcF1nipK1v2x5xubatLvK7d9-dXyoay6asKutYavH5KPT7Ybnvc2HvI8cbmYLbaukt0XujSw9Vfn6K35eI1fQpWL4_P6XwVNCyWLMjDDHQiC4gjk5vQEJNRoiGjGTMmKXiUhABCEm6iHAQwagrCCipJEYpYx4JP0e3v3aatP_bgO1VZb6AstYN67xWnCRdUchYP6M0_dFfvWzd8pzhjyeAoZHKgkl_qYEvoVdPaSre9okQdtaujdnXSrubr58Vp4j_TGHuf |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202508572 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202508572 |
Genre | researchArticle |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2023YFF0723900 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB0590000 – fundername: National Natural Science Foundation of China funderid: 22271302 – fundername: State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 7X8 |
ID | FETCH-LOGICAL-p2682-d4bea98fe65cdc4c0cb10aeb1b2cc9f3594ee7803c5de7e21cf02f180f476a673 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 18:33:19 EDT 2025 Fri Sep 19 03:40:48 EDT 2025 Mon Jun 30 09:44:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2682-d4bea98fe65cdc4c0cb10aeb1b2cc9f3594ee7803c5de7e21cf02f180f476a673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 3229028428 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3193718326 proquest_journals_3229028428 wiley_primary_10_1002_anie_202508572_ANIE202508572 |
PublicationCentury | 2000 |
PublicationDate | July 1, 2025 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 1, 2025 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 7 2004; 126 2023; 5 2020; 362 2017; 46 2019; 58 2011; 13 2020; 11 2024; 146 2018; 83 2012; 51 2018; 9 2015; 47 2012; 134 2015; 137 2023; 26 2021; 39 2019; 23 2013; 52 2014; 16 2024; 63 2019; 119 2019; 394 2025; 64 2014; 53 2015; 13 2019; 4 2023; 14 2021; 86 2018; 140 2023; 55 2011 2015; 51 2017; 28 2020; 142 2013; 42 2015; 54 2007 2006 2014; 46 2024; 11 2002 2009; 131 2021; 50 2014; 510 2011; 133 2012; 31 2017; 139 78 2016; 6 2017; 53 2010; 49 2010; 46 2021; 11 2016; 3 2006; 45 2022; 61 2018; 118 2013; 78 2011; 50 2015; 21 2017; 56 2008; 47 2010; 132 2016; 138 2020; 22 2021; 60 2009; 109 2012; 44 |
References_xml | – year: 2011 – volume: 139 start-page: 4443 year: 2017 end-page: 4451 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 924 year: 2015 end-page: 933 publication-title: Synthesis – volume: 4 start-page: 11358 year: 2019 end-page: 11361 publication-title: ChemistrySelect – volume: 50 start-page: 2010 year: 2021 end-page: 2073 publication-title: Chem. Soc. Rev. – volume: 394 start-page: 65 year: 2019 end-page: 103 publication-title: Coord. Chem. Rev. – volume: 50 start-page: 3299 year: 2011 end-page: 3302 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 7712 year: 2011 end-page: 7715 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 7559 year: 2004 end-page: 7570 publication-title: J. Am. Chem. Soc. – volume: 510 start-page: 485 year: 2014 end-page: 496 publication-title: Nature – volume: 58 start-page: 1719 year: 2019 end-page: 1723 publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 15442 year: 2015 end-page: 15445 publication-title: Chem. Commun. – volume: 5 start-page: 2088 year: 2023 end-page: 2100 publication-title: CCS Chem – volume: 54 start-page: 4264 year: 2015 end-page: 4268 publication-title: Angew. Chem. Int. Ed. – volume: 46 start-page: 2957 year: 2014 end-page: 2964 publication-title: Synthesis – volume: 46 year: 2010 publication-title: Chem. Commun. – volume: 49 start-page: 6940 year: 2010 end-page: 6952 publication-title: Angew. Chem. Int. Ed. – volume: 83 start-page: 12486 year: 2018 end-page: 12495 publication-title: J. Org. Chem. – volume: 11 start-page: 2178 year: 2024 end-page: 2181 publication-title: Org. Chem. Front. – volume: 44 start-page: 42 year: 2012 end-page: 50 publication-title: Synthesis – volume: 9 start-page: 4992 year: 2018 end-page: 4998 publication-title: Chem. Sci. – volume: 142 start-page: 20098 year: 2020 end-page: 20106 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 5008 year: 2010 end-page: 5011 publication-title: Org. Lett. – volume: 133 start-page: 2410 year: 2011 end-page: 2413 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 2397 year: 2017 end-page: 2402 publication-title: ACS Catal. – volume: 14 start-page: 10467 year: 2023 end-page: 10470 publication-title: Chem. Sci. – volume: 26 year: 2023 publication-title: Eur. J. Org. Chem. – volume: 53 start-page: 4964 year: 2014 end-page: 4967 publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 17118 year: 2019 end-page: 17129 publication-title: Angew. Chem. Int. Ed. – volume: 119 start-page: 3730 year: 2019 end-page: 3961 publication-title: Chem. Rev. – volume: 131 start-page: 8344 year: 2009 end-page: 8345 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 54 year: 2017 end-page: 61 publication-title: Tetrahedron: Asymmetry – volume: 11 start-page: 6450 year: 2020 end-page: 6456 publication-title: Chem. Sci. – volume: 86 start-page: 4616 year: 2021 end-page: 4624 publication-title: J. Org. Chem. – volume: 134 start-page: 14322 year: 2012 end-page: 14325 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 4845 year: 2017 end-page: 4854 publication-title: Chem. Soc. Rev. – volume: 56 start-page: 851 year: 2017 end-page: 855 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 6733 year: 2021 end-page: 6740 publication-title: ACS Catal. – volume: 13 start-page: 1666 year: 2011 end-page: 1669 publication-title: Org. Lett. – volume: 52 start-page: 4650 year: 2013 end-page: 4653 publication-title: Angew. Chem. Int. Ed. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 6723 year: 2013 publication-title: Chem. Soc. Rev. – volume: 109 start-page: 3612 year: 2009 end-page: 3676 publication-title: Chem. Rev. – volume: 53 start-page: 11686 year: 2017 end-page: 11689 publication-title: Chem. Commun. – volume: 139 start-page: 14224 year: 2017 end-page: 14231 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 15422 year: 2015 end-page: 15425 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 39 start-page: 1916 year: 2021 end-page: 1922 publication-title: Chin. J. Chem. – volume: 78 start-page: 5007 end-page: 5017 publication-title: J. Org. Chem. – volume: 6 start-page: 6591 year: 2016 end-page: 6595 publication-title: ACS Catal. – volume: 60 start-page: 26351 year: 2021 end-page: 26356 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 759 year: 2008 end-page: 762 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 476 year: 2014 end-page: 479 publication-title: Org. Lett. – year: 2007 – volume: 78 start-page: 1677 year: 2013 end-page: 1681 publication-title: J. Org. Chem. – volume: 55 start-page: 2206 year: 2023 end-page: 2218 publication-title: Synthesis – volume: 22 start-page: 8096 year: 2020 end-page: 8100 publication-title: Org. Lett. – volume: 50 start-page: 17467 year: 2021 end-page: 17477 publication-title: Dalton Trans. – volume: 64 year: 2025 publication-title: Angew. Chem. Int. Ed. – volume: 45 start-page: 3683 year: 2006 end-page: 3686 publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 9457 year: 2018 end-page: 9492 publication-title: Chem. Rev. – volume: 3 start-page: 1725 year: 2016 end-page: 1737 publication-title: Org. Chem. Front. – volume: 51 start-page: 2717 year: 2012 end-page: 2721 publication-title: Angew. Chem. Int. Ed. – start-page: 2704 year: 2002 end-page: 2705 publication-title: Chem. Commun. – volume: 23 start-page: 1478 year: 2019 end-page: 1483 publication-title: Org. Process Res. Dev. – volume: 21 start-page: 9062 year: 2015 end-page: 9065 publication-title: Chem.‐Eur. J. – year: 2006 – volume: 140 start-page: 10644 year: 2018 end-page: 10648 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 7245 year: 2021 end-page: 7250 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 3160 year: 2010 end-page: 3163 publication-title: Org. Lett. – volume: 60 start-page: 16027 year: 2021 end-page: 16034 publication-title: Angew. Chem. Int. Ed. – volume: 146 start-page: 2888 year: 2024 end-page: 2894 publication-title: J. Am. Chem. Soc. – volume: 362 start-page: 970 year: 2020 end-page: 997 publication-title: Adv. Synth. Catal. – volume: 132 start-page: 2898 year: 2010 end-page: 2900 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5480 year: 2020 publication-title: Nat. Commun. – volume: 137 start-page: 10585 year: 2015 end-page: 10602 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 7840 year: 2016 end-page: 7843 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 10691 year: 2015 end-page: 10698 publication-title: Org. Biomol. Chem. – volume: 31 start-page: 7823 year: 2012 end-page: 7826 publication-title: Organometallics |
SSID | ssj0028806 |
Score | 2.4921505 |
Snippet | Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed yet it is highly necessary to develop new NHCs bearing... Although a considerable number of chiral nitrogen heterocyclic carbenes (NHCs) have been developed, yet it is highly necessary to develop new NHCs bearing... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202508572 |
SubjectTerms | Amides Amination Asymmetric catalysis Asymmetry Bromination Catalysis Chemical synthesis Chiral NHC Conjugate silylation Copper Copper catalyst Cross coupling Enantiomers Ligands Organic compounds Oxidation Palladium Phosphoric acid Quinolines SN2′ silylation Steric hindrance Transition metals |
Title | Design, Synthesis, and Application of a Family of Chiral Non‐C2‐Symmetric NHCs with a Fused Sidechain |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202508572 https://www.proquest.com/docview/3229028428 https://www.proquest.com/docview/3193718326 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EeUlIzESSPyKM1ahVWHoQEFii2znLCJEWpF2gImfwG_kl2AnbXiMsESOkouc8935bN99h9ApdUKgKKcBB5u4BQrwQFrBAgBFFK0xvuoA2aEY3LHre37_LYu_wYdoN9y8ZtT22iu40tXFF2ioz8B26zs3hUseeyMcUeHB8y9vWvwo4oSzSS-iNPBV6BeojSG5-En-w7_87qXW00x_HalFB5voksfz2VSfm9df2I3_-YMNtDb3QXG3EZpNtATlFlpJF6XftlFxWcd1nOHRS-kcxKqozrAqc9z9Ou3GY4sVbspm-Hb6UDy7bw7H5cfbe0rcZfTy9OTLdRk8HKQV9hu-nmJWQY5HRQ7mQRXlDrrr927TQTCvyRBMiHDOeM40qERaENzkhpnQ6ChUzuBrYkxiKU8YQCxDangOMZDI2JDYSIaWxUKJmO6i5XJcwh7CuVGMWnBqahPGGNegJTeJ0lLmkRSmgw4XY5LNFavKqMend1MqkR100j527PHnHKqE8cy9E3mQP2eqRAeRegCySQPdkTUgzSTzrM9a1mfd4VWvvdv_C9EBWvXtJpD3EC1Pn2dw5NyVqT6uRfITZYDkLw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFLUqWNBNoaVVh0frSl0SSPxInOUogIaWZsGA1F1kO9ciQmQQmVnAik_gG_kSrpNJKF22mygvW4l9H8f29bmEfOcoBJpLHkhwKQ5QQAbKxSIA0EzzluOrDZDN48mF-PFb9tGEfi9Mxw8xTLh5zWjttVdwPyF98MIa6rdg4wAPfbiSCVrh1XaRzuOis4FBiqF4dhuMOA98HvqetzFkB6_Lv0KYf-LU1tEcrxPTf2IXX3K1v5ibfXv_F3vjf_3DBnm3hKF03MnNe_IG6g9kLeuzv22S6rAN7dij07saMWJTNXtU1yUdvyx405mjmnaZM_x5dlndYp35rH56eMwYHqZ319c-Y5el-SRrqJ_z9SUWDZR0WpVgL3VVfyQXx0fn2SRYpmUIbliMeLwUBnSqHMTSllbY0Joo1GjzDbM2dVymAiBRIbeyhARYZF3IXKRCJ5JYxwn_RFbqWQ2fCS2tFtwBaqpLhRDSgFHSptooVUYqtiOy03dKsdStpuCeoh69KlMj8m14jM3jlzp0DbMFvhN5nj-0VvGIsLYHipuOvaPoeJpZ4Zu-GJq-GOcnR8PV1r8U-krWJue_TovTk_znNnnr73dxvTtkZX67gF1EL3PzpZXPZ7c06E0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQkYANb8TQAkZi2bSJX3GWo7SjKaAIMVTqLnLsazVCzYyamUW76if0G_slvU5m0pYlbKK8bCX2fRzb1-cS8pWjEBgueSTBZzhAARlpr0QEYJjhHcdXFyBbqOmx-HYiT-7t4u_5IYYJt6AZnb0OCr5wfv-ONDTswMbxHbpwLVM0wo-FQl8ZYNGvgUCKoXT2-4s4j0Ia-g1tY8z2H5Z_ADDvw9TOz0xeELP5wj685M_ealnt2cu_yBv_5xdekudrEErHvdS8Io-geU2e5pvcb29IfdAFduzS2UWDCLGt211qGkfHd8vddO6poX3ejHCen9bnWGcxb26urnOGh9nF2VnI12VpMc1bGmZ8Q4lVC47Oagf21NTNW3I8OfydT6N1UoZowRSicScqMJn2oKR1VtjYVkls0OJXzNrMc5kJgFTH3EoHKbDE-pj5RMdepMqolL8jW828gfeEOmsE94B66jMhhKyg0tJmptLaJVrZEdnZ9Em51qy25IGgHn0q0yPyZXiMzRMWOkwD8xW-kwSWP7RVakRY1wHloufuKHuWZlaGpi-Hpi_HxdHhcPXhXwp9Jk9-HkzKH0fF923yLNzug3p3yNbyfAUfEbosq0-ddN4CE-jm_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+Synthesis%2C+and+Application+of+a+Family+of+Chiral+Non-C2-Symmetric+NHCs+with+a+Fused+Sidechain&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cai%2C+Zhen-Xi&rft.au=Zhang%2C+Qi&rft.au=Wei%2C+Tian-Yu&rft.au=Tian%2C+Hu&rft.date=2025-07-01&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202508572&rft_id=info:doi/10.1002%2Fanie.202508572&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |