Concentration‐Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs

Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable N...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 35; pp. e202513441 - n/a
Main Authors Tan, Yi, Chen, Xiaokang, Yuan, Jian, Sheng, Guan, Deng, Wei‐Qiao, Wu, Hao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 25.08.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202513441

Cover

Abstract Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal‐organic framework (PMOF) and Cu‐porphyrin MOF (Cu‐PMOF) catalysts for NO3− concentration‐adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu‐PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu‐PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu‐PMOF enables consecutive *NO‐*CO coupling. This work highlights adaptive electrocatalyst design for efficient C‐N coupling, advancing sustainable urea synthesis. This study introduces porphyrinic metal‐organic frameworks (PMOF) and Cu‐metallated PMOF for adaptive electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3−), addressing concentration‐dependent challenges. PMOF facilitates *HNO2‐*CO2 coupling under concentrated NO3−, while Cu‐porphyrin MOF (Cu‐PMOF) promotes *NO‐*CO coupling in dilute conditions, with theoretical calculations and in situ studies revealing distinct C‐N coupling pathways for sustainable urea production.
AbstractList Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal‐organic framework (PMOF) and Cu‐porphyrin MOF (Cu‐PMOF) catalysts for NO3− concentration‐adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu‐PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu‐PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu‐PMOF enables consecutive *NO‐*CO coupling. This work highlights adaptive electrocatalyst design for efficient C‐N coupling, advancing sustainable urea synthesis.
Traditional urea synthesis via the Bosch-Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from CO2 and nitrate (NO3-) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3- concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO3- concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu-PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3- conditions. Experimentally, PMOF achieves a urea yield of 28.6 μmol h-1 mgcat-1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3-, whereas Cu-PMOF outperforms in 0.05 M NO3- with a yield of 25.5 μmol h-1 mgcat-1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.Traditional urea synthesis via the Bosch-Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from CO2 and nitrate (NO3-) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3- concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO3- concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu-PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3- conditions. Experimentally, PMOF achieves a urea yield of 28.6 μmol h-1 mgcat-1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3-, whereas Cu-PMOF outperforms in 0.05 M NO3- with a yield of 25.5 μmol h-1 mgcat-1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.
Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal‐organic framework (PMOF) and Cu‐porphyrin MOF (Cu‐PMOF) catalysts for NO3− concentration‐adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu‐PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu‐PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu‐PMOF enables consecutive *NO‐*CO coupling. This work highlights adaptive electrocatalyst design for efficient C‐N coupling, advancing sustainable urea synthesis. This study introduces porphyrinic metal‐organic frameworks (PMOF) and Cu‐metallated PMOF for adaptive electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3−), addressing concentration‐dependent challenges. PMOF facilitates *HNO2‐*CO2 coupling under concentrated NO3−, while Cu‐porphyrin MOF (Cu‐PMOF) promotes *NO‐*CO coupling in dilute conditions, with theoretical calculations and in situ studies revealing distinct C‐N coupling pathways for sustainable urea production.
Author Yuan, Jian
Chen, Xiaokang
Deng, Wei‐Qiao
Tan, Yi
Sheng, Guan
Wu, Hao
Author_xml – sequence: 1
  givenname: Yi
  surname: Tan
  fullname: Tan, Yi
  organization: Shandong University
– sequence: 2
  givenname: Xiaokang
  surname: Chen
  fullname: Chen, Xiaokang
  organization: Shandong University
– sequence: 3
  givenname: Jian
  surname: Yuan
  fullname: Yuan, Jian
  organization: Shandong University
– sequence: 4
  givenname: Guan
  surname: Sheng
  fullname: Sheng, Guan
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Wei‐Qiao
  surname: Deng
  fullname: Deng, Wei‐Qiao
  organization: Shandong University
– sequence: 6
  givenname: Hao
  orcidid: 0000-0002-9464-2033
  surname: Wu
  fullname: Wu, Hao
  email: haowu2020@sdu.edu.cn
  organization: Shandong University
BookMark eNpdkctKAzEUhoNUsK1uXQfcuJma29yWZWi10IugXQ-ZTEpTpsmYpMrsfASf0ScxtdKFq3P7zn8O_APQ00ZLAG4xGmGEyAPXSo4IIjGmjOEL0McxwRFNU9oLOaM0SrMYX4GBc7vAZxlK-uBQGC2k9pZ7ZfT359e45q1X7xJOGim8NYJ73nReCbi2ksOXTvutdMrBqTV7WKwI5LqGS3VUkPBdcfhsbLvtrNK_k4UM-41pz83FauquweWGN07e_MUhWE8nr8VTNF89zorxPGpJkuEo3SBUV1nKBaeC5YwwXKEqzitKGY8TmiUZzVHO0jAmFc0YqRNRMZEjlNSEbegQ3J90W2veDtL5cq-ckE3DtTQHV1JCEhrjPGgNwd0_dGcOVofvAsUoCmdyFKj8RH2oRnZla9We267EqDxaUB4tKM8WlOPlbHKu6A8kz39d
ContentType Journal Article
Copyright 2025 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202513441
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID ANIE202513441
Genre researchArticle
GrantInformation_xml – fundername: Taishan Scholars Project
  funderid: tspd20230601
– fundername: Natural Science Foundation of Shandong Province
  funderid: 2022HWYQ‐009
– fundername: National Key R&D Program of China
  funderid: 2022YFA1503104
– fundername: Basic Research Program of Jiangsu
  funderid: BK20230243
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
7X8
ID FETCH-LOGICAL-p2681-7f00db87aca3c494241b0b59b334a563868390947a3c2b3842d6cb4c9006d24f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 03 03:07:54 EDT 2025
Wed Sep 24 05:18:33 EDT 2025
Tue Aug 26 10:10:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2681-7f00db87aca3c494241b0b59b334a563868390947a3c2b3842d6cb4c9006d24f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9464-2033
PQID 3243009490
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_3226351956
proquest_journals_3243009490
wiley_primary_10_1002_anie_202513441_ANIE202513441
PublicationCentury 2000
PublicationDate August 25, 2025
PublicationDateYYYYMMDD 2025-08-25
PublicationDate_xml – month: 08
  year: 2025
  text: August 25, 2025
  day: 25
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 4
2023; 5
2023; 6
2023; 59
2020; 142
2023; 16
2023; 145
2024; 60
2025; 15
2025; 2
2020; 12
2023; 1
2025; 16
2025
2023; 3
2024; 14
2024; 36
2024; 15
2019; 141
2022; 316
2024; 18
2022; 144
2023; 62
2025; 147
2021; 12
2022; 7
2022; 12
2023; 336
2024; 63
2024; 4
2023; 338
2024; 3
2022; 16
References_xml – volume: 338
  year: 2023
  publication-title: Appl. Catal. B Environ.
– volume: 6
  start-page: 939
  year: 2023
  end-page: 948
  publication-title: Nat. Catal.
– volume: 144
  start-page: 11530
  year: 2022
  end-page: 11535
  publication-title: J. Am. Chem. Soc.
– volume: 5
  year: 2023
  publication-title: Carbon Energy
– volume: 2
  start-page: 1748
  year: 2025
  end-page: 3395
  publication-title: Nat. Nanotechnol.
– volume: 141
  start-page: 20037
  year: 2019
  end-page: 20042
  publication-title: J. Am. Chem. Soc.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– year: 2025
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 8213
  year: 2022
  end-page: 8222
  publication-title: ACS Nano
– volume: 15
  start-page: 3276
  year: 2025
  end-page: 3283
  publication-title: ACS Catal.
– volume: 336
  year: 2023
  publication-title: Appl. Catal. B Environ.
– volume: 3
  start-page: 1404
  year: 2024
  end-page: 1413
  publication-title: Nat. Synth.
– volume: 18
  start-page: 23894
  year: 2024
  end-page: 23911
  publication-title: ACS Nano
– volume: 147
  start-page: 6049
  year: 2025
  end-page: 6057
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 10331
  year: 2020
  end-page: 10336
  publication-title: J. Am. Chem. Soc.
– volume: 4
  year: 2024
  publication-title: SusMat
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 284
  year: 2022
  end-page: 291
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 868
  year: 2021
  end-page: 876
  publication-title: Nat. Sustain.
– volume: 16
  start-page: 3271
  year: 2025
  publication-title: Nat. Commun.
– volume: 316
  year: 2022
  publication-title: Appl. Catal. B Environ.
– volume: 3
  year: 2023
  publication-title: eScience
– volume: 16
  start-page: 2003
  year: 2023
  end-page: 2013
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 176
  year: 2024
  publication-title: Nat. Commun.
– volume: 145
  start-page: 9665
  year: 2023
  end-page: 9671
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 717
  year: 2020
  end-page: 724
  publication-title: Nat. Chem.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 59
  start-page: 4344
  year: 2023
  end-page: 4347
  publication-title: Chem. Commun.
– volume: 15
  start-page: 8858
  year: 2024
  publication-title: Nat. Commun.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 45
  year: 2023
  end-page: 53
  publication-title: EES Catal
– volume: 60
  start-page: 3669
  year: 2024
  end-page: 3672
  publication-title: Chem. Commun.
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 6390
  year: 2021
  publication-title: Nat. Commun.
SSID ssj0028806
Score 2.490692
Snippet Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production...
Traditional urea synthesis via the Bosch-Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e202513441
SubjectTerms Carbon dioxide
Copper
Coupling
Density functional theory
Electrocatalysts
Emissions
Energy consumption
Greenhouse gases
Hydrogen bonding
Intermediates
Metal-organic frameworks
Nitrate concentration
Nitrates
Nitrogen dioxide
Porphyrin
Porphyrins
Side reactions
Spectroscopy
Synthesis
Urea
Urea synthesis
Title Concentration‐Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202513441
https://www.proquest.com/docview/3243009490
https://www.proquest.com/docview/3226351956
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT8IwEG-ML_rifyOKpia-Dkbb_XskCEETwKgkvC3t1iXEuBEGJvjkR_Az-km862CCj_q2rW2y7Xq93117vyPkxpRDCnRiydjRltCgc2AFY8uOlOdIr6G8CB3FXt_tDsX9yBmtZfEX_BBlwA01w6zXqOBS5fUf0lDMwAb_DuwzFyZzvcFdJM-_fSz5oxhMziK9iHMLq9CvWBttVt8cvoEv11GqMTOdfSJXL1icLnmpzWeqFr3_4m78zxcckL0lBqXNYtIcki2dHpGd1qr02zGZtzCZMV0y6n59fDZjOcF1kbaLqjkm6LOA4XQIoJM-LVLAkfk4p51p9kpbA0ZlGtP-2FDf0rexpA8ZCnQ6Tk1LT89ww39SPuwNOvkJGXbaz62utazPYE2Y6zcsL7HtWPmejCSPRCAADChbOYHiXEgHFNsF9AXuowfNTHFfsNiNlIgC0PSYiYSfku00S_UZoeDGSV83EjADUng6UsqBzkHCbT9JJIsrpLqST7hUsjwELMjxZGRgV8h12Qy_Cvc8ZKqzOfZBth1MiqwQZoQRTgoaj7AgbGYhiiEsxRA2-3ft8u78L4MuyC5eY-SZOVWyPZvO9SVAl5m6MtPzG5Vs6OI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOZQLO6KsRuKaNrWdJjlWVauytCBoJW6RnThShEirLkjlxCfwjXwJM04TKEc4xouUZDyeN2PPG0IuTTkkX8eWjBxtCQ06B1YwsuxQuY5068oN0VHs9Rvdobh-cvLbhJgLk_FDFAE31AyzX6OCY0C69s0aiinY4OCBgeYCU9fXzSEd4qKHgkGKwfLMEow4t7AOfc7baLPa6vwVhPkTpxpD09kiKn_F7H7Jc3U-U9Xw7Rd747--YZtsLmEobWbrZoes6XSXlFt59bc9Mm9hPmO6JNX9fP9oRnKMWyNtZ4VzTNxnAdPpEHAnfVykACWnyZR2JqMX2rpjVKYR7SeG_Za-JpLej1CmkyQ1PT09wzP_cdHYu-tM98mw0x60utayRIM1Zg2vbrmxbUfKc2UoeSh8AXhA2crxFedCOqDbDQBg4EG60M0U9wSLGqESoQ_KHjER8wNSSkepPiQUPDnp6XoMlkAKV4dKOTDYj7ntxbFkUYWc5AIKlno2DQAOcrwc6dsVclF0w6_CYw-Z6tEcxyDhDuZFVggz0gjGGZNHkHE2swDFEBRiCJr9q3bxdPSXSeek3B30boPbq_7NMdnAdgxEM-eElGaTuT4FJDNTZ2atfgEvI-0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkYALO6JQwEhcQ1Pb2Y5VacTWgoBK3CI7dqQKkUZdkMqJT-Ab-RJmkjYsRzjGi5RkPJ43Y88bQk7yckiBSSypHWMJAzoHVlBbdqw8R3oN5cXoKHa67nlPXD46j9-y-At-iDLghpqR79eo4JlO6l-koZiBDf4d2GcuMHN9UbhgKxEW3ZUEUgxWZ5FfxLmFZejntI02q_-c_wNgfoepuZ0J14icv2FxveTpdDJWp_HrL_LG_3zCOlmdgVDaLFbNBlkw6SZZbs1rv22RSQuzGdMZpe7H23tTyww3RtouyubkUZ8pTKc9QJ30fpoCkBz1RzQcDp5p64ZRmWra7efct_SlL-ntACU67Kd5T8eM8cQ_Kxs7N-Fom_TC9kPr3JoVaLAy5voNy0tsWyvfk7HksQgEoAFlKydQnAvpgGa7AL_Af_SgmynuC6bdWIk4AFXXTCR8h1TSQWp2CQU_TvqmkYAdkMIzsVIODA4SbvtJIpmuktpcPtFMy0YRgEGOVyMDu0qOy274VXjoIVMzmOAYpNvBrMgqYbkwoqzg8YgKxmYWoRiiUgxRs3vRLp_2_jLpiCzdnoXR9UX3ap-sYDNGoZlTI5XxcGIOAMaM1WG-Uj8Beqjrrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentration%E2%80%90Adaptive+Electrocatalytic+Urea+Synthesis+From+CO2+and+Nitrate+via+Porphyrin+and+Metalloporphyrin+MOFs&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tan%2C+Yi&rft.au=Chen%2C+Xiaokang&rft.au=Yuan%2C+Jian&rft.au=Sheng%2C+Guan&rft.date=2025-08-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=35&rft_id=info:doi/10.1002%2Fanie.202513441&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon