Concentration‐Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs
Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable N...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 35; pp. e202513441 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
25.08.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202513441 |
Cover
Abstract | Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal‐organic framework (PMOF) and Cu‐porphyrin MOF (Cu‐PMOF) catalysts for NO3− concentration‐adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu‐PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu‐PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu‐PMOF enables consecutive *NO‐*CO coupling. This work highlights adaptive electrocatalyst design for efficient C‐N coupling, advancing sustainable urea synthesis.
This study introduces porphyrinic metal‐organic frameworks (PMOF) and Cu‐metallated PMOF for adaptive electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3−), addressing concentration‐dependent challenges. PMOF facilitates *HNO2‐*CO2 coupling under concentrated NO3−, while Cu‐porphyrin MOF (Cu‐PMOF) promotes *NO‐*CO coupling in dilute conditions, with theoretical calculations and in situ studies revealing distinct C‐N coupling pathways for sustainable urea production. |
---|---|
AbstractList | Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal‐organic framework (PMOF) and Cu‐porphyrin MOF (Cu‐PMOF) catalysts for NO3− concentration‐adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu‐PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu‐PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu‐PMOF enables consecutive *NO‐*CO coupling. This work highlights adaptive electrocatalyst design for efficient C‐N coupling, advancing sustainable urea synthesis. Traditional urea synthesis via the Bosch-Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from CO2 and nitrate (NO3-) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3- concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO3- concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu-PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3- conditions. Experimentally, PMOF achieves a urea yield of 28.6 μmol h-1 mgcat-1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3-, whereas Cu-PMOF outperforms in 0.05 M NO3- with a yield of 25.5 μmol h-1 mgcat-1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis.Traditional urea synthesis via the Bosch-Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from CO2 and nitrate (NO3-) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3- concentrations and competing side reactions. Herein, we propose porphyrin metal-organic framework (PMOF) and Cu-porphyrin MOF (Cu-PMOF) catalysts for NO3- concentration-adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu-PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3- conditions. Experimentally, PMOF achieves a urea yield of 28.6 μmol h-1 mgcat-1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3-, whereas Cu-PMOF outperforms in 0.05 M NO3- with a yield of 25.5 μmol h-1 mgcat-1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu-PMOF enables consecutive *NO-*CO coupling. This work highlights adaptive electrocatalyst design for efficient C-N coupling, advancing sustainable urea synthesis. Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production from carbon dioxide (CO2) and nitrate (NO3−) under ambient conditions offers a sustainable alternative, yet challenges persist due to variable NO3− concentrations and competing side reactions. Herein, we propose porphyrin metal‐organic framework (PMOF) and Cu‐porphyrin MOF (Cu‐PMOF) catalysts for NO3− concentration‐adaptive urea synthesis. Density functional theory (DFT) calculations reveal that PMOF weakly adsorbs *NO2 via hydrogen bonding, favoring its coupling with *CO2, while Cu‐PMOF strongly binds *NO2 at Cu sites, facilitating spontaneous *NO/*CO coupling to form *OCNO intermediates under dilute NO3− conditions. Experimentally, PMOF achieves a urea yield of 28.6 µmol h−1 mgcat−1 and a Faradaic efficiency (FE) of 23.1% in 0.1 M NO3−, whereas Cu‐PMOF outperforms in 0.05 M NO3− with a yield of 25.5 µmol h−1 mgcat−1 and FE of 52.7%. In situ spectroscopy and mechanistic study confirm distinct pathways: PMOF relies on stepwise coupling of *HNO2 with *CO2, while Cu‐PMOF enables consecutive *NO‐*CO coupling. This work highlights adaptive electrocatalyst design for efficient C‐N coupling, advancing sustainable urea synthesis. This study introduces porphyrinic metal‐organic frameworks (PMOF) and Cu‐metallated PMOF for adaptive electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3−), addressing concentration‐dependent challenges. PMOF facilitates *HNO2‐*CO2 coupling under concentrated NO3−, while Cu‐porphyrin MOF (Cu‐PMOF) promotes *NO‐*CO coupling in dilute conditions, with theoretical calculations and in situ studies revealing distinct C‐N coupling pathways for sustainable urea production. |
Author | Yuan, Jian Chen, Xiaokang Deng, Wei‐Qiao Tan, Yi Sheng, Guan Wu, Hao |
Author_xml | – sequence: 1 givenname: Yi surname: Tan fullname: Tan, Yi organization: Shandong University – sequence: 2 givenname: Xiaokang surname: Chen fullname: Chen, Xiaokang organization: Shandong University – sequence: 3 givenname: Jian surname: Yuan fullname: Yuan, Jian organization: Shandong University – sequence: 4 givenname: Guan surname: Sheng fullname: Sheng, Guan organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Wei‐Qiao surname: Deng fullname: Deng, Wei‐Qiao organization: Shandong University – sequence: 6 givenname: Hao orcidid: 0000-0002-9464-2033 surname: Wu fullname: Wu, Hao email: haowu2020@sdu.edu.cn organization: Shandong University |
BookMark | eNpdkctKAzEUhoNUsK1uXQfcuJma29yWZWi10IugXQ-ZTEpTpsmYpMrsfASf0ScxtdKFq3P7zn8O_APQ00ZLAG4xGmGEyAPXSo4IIjGmjOEL0McxwRFNU9oLOaM0SrMYX4GBc7vAZxlK-uBQGC2k9pZ7ZfT359e45q1X7xJOGim8NYJ73nReCbi2ksOXTvutdMrBqTV7WKwI5LqGS3VUkPBdcfhsbLvtrNK_k4UM-41pz83FauquweWGN07e_MUhWE8nr8VTNF89zorxPGpJkuEo3SBUV1nKBaeC5YwwXKEqzitKGY8TmiUZzVHO0jAmFc0YqRNRMZEjlNSEbegQ3J90W2veDtL5cq-ckE3DtTQHV1JCEhrjPGgNwd0_dGcOVofvAsUoCmdyFKj8RH2oRnZla9We267EqDxaUB4tKM8WlOPlbHKu6A8kz39d |
ContentType | Journal Article |
Copyright | 2025 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202513441 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | ANIE202513441 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Taishan Scholars Project funderid: tspd20230601 – fundername: Natural Science Foundation of Shandong Province funderid: 2022HWYQ‐009 – fundername: National Key R&D Program of China funderid: 2022YFA1503104 – fundername: Basic Research Program of Jiangsu funderid: BK20230243 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 7X8 |
ID | FETCH-LOGICAL-p2681-7f00db87aca3c494241b0b59b334a563868390947a3c2b3842d6cb4c9006d24f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 03 03:07:54 EDT 2025 Wed Sep 24 05:18:33 EDT 2025 Tue Aug 26 10:10:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2681-7f00db87aca3c494241b0b59b334a563868390947a3c2b3842d6cb4c9006d24f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9464-2033 |
PQID | 3243009490 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3226351956 proquest_journals_3243009490 wiley_primary_10_1002_anie_202513441_ANIE202513441 |
PublicationCentury | 2000 |
PublicationDate | August 25, 2025 |
PublicationDateYYYYMMDD | 2025-08-25 |
PublicationDate_xml | – month: 08 year: 2025 text: August 25, 2025 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 4 2023; 5 2023; 6 2023; 59 2020; 142 2023; 16 2023; 145 2024; 60 2025; 15 2025; 2 2020; 12 2023; 1 2025; 16 2025 2023; 3 2024; 14 2024; 36 2024; 15 2019; 141 2022; 316 2024; 18 2022; 144 2023; 62 2025; 147 2021; 12 2022; 7 2022; 12 2023; 336 2024; 63 2024; 4 2023; 338 2024; 3 2022; 16 |
References_xml | – volume: 338 year: 2023 publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 939 year: 2023 end-page: 948 publication-title: Nat. Catal. – volume: 144 start-page: 11530 year: 2022 end-page: 11535 publication-title: J. Am. Chem. Soc. – volume: 5 year: 2023 publication-title: Carbon Energy – volume: 2 start-page: 1748 year: 2025 end-page: 3395 publication-title: Nat. Nanotechnol. – volume: 141 start-page: 20037 year: 2019 end-page: 20042 publication-title: J. Am. Chem. Soc. – volume: 36 year: 2024 publication-title: Adv. Mater. – year: 2025 publication-title: Adv. Energy Mater. – volume: 16 start-page: 8213 year: 2022 end-page: 8222 publication-title: ACS Nano – volume: 15 start-page: 3276 year: 2025 end-page: 3283 publication-title: ACS Catal. – volume: 336 year: 2023 publication-title: Appl. Catal. B Environ. – volume: 3 start-page: 1404 year: 2024 end-page: 1413 publication-title: Nat. Synth. – volume: 18 start-page: 23894 year: 2024 end-page: 23911 publication-title: ACS Nano – volume: 147 start-page: 6049 year: 2025 end-page: 6057 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 10331 year: 2020 end-page: 10336 publication-title: J. Am. Chem. Soc. – volume: 4 year: 2024 publication-title: SusMat – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 284 year: 2022 end-page: 291 publication-title: ACS Energy Lett. – volume: 4 start-page: 868 year: 2021 end-page: 876 publication-title: Nat. Sustain. – volume: 16 start-page: 3271 year: 2025 publication-title: Nat. Commun. – volume: 316 year: 2022 publication-title: Appl. Catal. B Environ. – volume: 3 year: 2023 publication-title: eScience – volume: 16 start-page: 2003 year: 2023 end-page: 2013 publication-title: Energy Environ. Sci. – volume: 15 start-page: 176 year: 2024 publication-title: Nat. Commun. – volume: 145 start-page: 9665 year: 2023 end-page: 9671 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 717 year: 2020 end-page: 724 publication-title: Nat. Chem. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 59 start-page: 4344 year: 2023 end-page: 4347 publication-title: Chem. Commun. – volume: 15 start-page: 8858 year: 2024 publication-title: Nat. Commun. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 1 start-page: 45 year: 2023 end-page: 53 publication-title: EES Catal – volume: 60 start-page: 3669 year: 2024 end-page: 3672 publication-title: Chem. Commun. – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 6390 year: 2021 publication-title: Nat. Commun. |
SSID | ssj0028806 |
Score | 2.490692 |
Snippet | Traditional urea synthesis via the Bosch–Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production... Traditional urea synthesis via the Bosch-Meiser process suffers from high energy consumption and greenhouse gas emissions. Electrocatalytic urea production... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e202513441 |
SubjectTerms | Carbon dioxide Copper Coupling Density functional theory Electrocatalysts Emissions Energy consumption Greenhouse gases Hydrogen bonding Intermediates Metal-organic frameworks Nitrate concentration Nitrates Nitrogen dioxide Porphyrin Porphyrins Side reactions Spectroscopy Synthesis Urea Urea synthesis |
Title | Concentration‐Adaptive Electrocatalytic Urea Synthesis From CO2 and Nitrate via Porphyrin and Metalloporphyrin MOFs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202513441 https://www.proquest.com/docview/3243009490 https://www.proquest.com/docview/3226351956 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT8IwEG-ML_rifyOKpia-Dkbb_XskCEETwKgkvC3t1iXEuBEGJvjkR_Az-km862CCj_q2rW2y7Xq93117vyPkxpRDCnRiydjRltCgc2AFY8uOlOdIr6G8CB3FXt_tDsX9yBmtZfEX_BBlwA01w6zXqOBS5fUf0lDMwAb_DuwzFyZzvcFdJM-_fSz5oxhMziK9iHMLq9CvWBttVt8cvoEv11GqMTOdfSJXL1icLnmpzWeqFr3_4m78zxcckL0lBqXNYtIcki2dHpGd1qr02zGZtzCZMV0y6n59fDZjOcF1kbaLqjkm6LOA4XQIoJM-LVLAkfk4p51p9kpbA0ZlGtP-2FDf0rexpA8ZCnQ6Tk1LT89ww39SPuwNOvkJGXbaz62utazPYE2Y6zcsL7HtWPmejCSPRCAADChbOYHiXEgHFNsF9AXuowfNTHFfsNiNlIgC0PSYiYSfku00S_UZoeDGSV83EjADUng6UsqBzkHCbT9JJIsrpLqST7hUsjwELMjxZGRgV8h12Qy_Cvc8ZKqzOfZBth1MiqwQZoQRTgoaj7AgbGYhiiEsxRA2-3ft8u78L4MuyC5eY-SZOVWyPZvO9SVAl5m6MtPzG5Vs6OI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQOZQLO6KsRuKaNrWdJjlWVauytCBoJW6RnThShEirLkjlxCfwjXwJM04TKEc4xouUZDyeN2PPG0IuTTkkX8eWjBxtCQ06B1YwsuxQuY5068oN0VHs9Rvdobh-cvLbhJgLk_FDFAE31AyzX6OCY0C69s0aiinY4OCBgeYCU9fXzSEd4qKHgkGKwfLMEow4t7AOfc7baLPa6vwVhPkTpxpD09kiKn_F7H7Jc3U-U9Xw7Rd747--YZtsLmEobWbrZoes6XSXlFt59bc9Mm9hPmO6JNX9fP9oRnKMWyNtZ4VzTNxnAdPpEHAnfVykACWnyZR2JqMX2rpjVKYR7SeG_Za-JpLej1CmkyQ1PT09wzP_cdHYu-tM98mw0x60utayRIM1Zg2vbrmxbUfKc2UoeSh8AXhA2crxFedCOqDbDQBg4EG60M0U9wSLGqESoQ_KHjER8wNSSkepPiQUPDnp6XoMlkAKV4dKOTDYj7ntxbFkUYWc5AIKlno2DQAOcrwc6dsVclF0w6_CYw-Z6tEcxyDhDuZFVggz0gjGGZNHkHE2swDFEBRiCJr9q3bxdPSXSeek3B30boPbq_7NMdnAdgxEM-eElGaTuT4FJDNTZ2atfgEvI-0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQkYALO6JQwEhcQ1Pb2Y5VacTWgoBK3CI7dqQKkUZdkMqJT-Ab-RJmkjYsRzjGi5RkPJ43Y88bQk7yckiBSSypHWMJAzoHVlBbdqw8R3oN5cXoKHa67nlPXD46j9-y-At-iDLghpqR79eo4JlO6l-koZiBDf4d2GcuMHN9UbhgKxEW3ZUEUgxWZ5FfxLmFZejntI02q_-c_wNgfoepuZ0J14icv2FxveTpdDJWp_HrL_LG_3zCOlmdgVDaLFbNBlkw6SZZbs1rv22RSQuzGdMZpe7H23tTyww3RtouyubkUZ8pTKc9QJ30fpoCkBz1RzQcDp5p64ZRmWra7efct_SlL-ntACU67Kd5T8eM8cQ_Kxs7N-Fom_TC9kPr3JoVaLAy5voNy0tsWyvfk7HksQgEoAFlKydQnAvpgGa7AL_Af_SgmynuC6bdWIk4AFXXTCR8h1TSQWp2CQU_TvqmkYAdkMIzsVIODA4SbvtJIpmuktpcPtFMy0YRgEGOVyMDu0qOy274VXjoIVMzmOAYpNvBrMgqYbkwoqzg8YgKxmYWoRiiUgxRs3vRLp_2_jLpiCzdnoXR9UX3ap-sYDNGoZlTI5XxcGIOAMaM1WG-Uj8Beqjrrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentration%E2%80%90Adaptive+Electrocatalytic+Urea+Synthesis+From+CO2+and+Nitrate+via+Porphyrin+and+Metalloporphyrin+MOFs&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Tan%2C+Yi&rft.au=Chen%2C+Xiaokang&rft.au=Yuan%2C+Jian&rft.au=Sheng%2C+Guan&rft.date=2025-08-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=64&rft.issue=35&rft_id=info:doi/10.1002%2Fanie.202513441&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |