Integrative clustering methods for high-dimensional molecular data
High-throughput 'omic' data, such as gene expression, DNA methylation, DNA copy number, has played an instrumental role in furthering our understanding of the molecular basis in states of human health and disease. As cells with similar morphological characteristics can exhibit entirely dif...
Saved in:
Published in | Translational cancer research Vol. 3; no. 3; pp. 202 - 216 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
China
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2218-676X 2219-6803 |
DOI | 10.3978/j.issn.2218-676X.2014.06.03 |
Cover
Abstract | High-throughput 'omic' data, such as gene expression, DNA methylation, DNA copy number, has played an instrumental role in furthering our understanding of the molecular basis in states of human health and disease. As cells with similar morphological characteristics can exhibit entirely different molecular profiles and because of the potential that these discrepancies might further our understanding of patient-level variability in clinical outcomes, there is significant interest in the use of high-throughput 'omic' data for the identification of novel molecular subtypes of a disease. While numerous clustering methods have been proposed for identifying of molecular subtypes, most were developed for single "omic' data types and may not be appropriate when more than one 'omic' data type are collected on study subjects. Given that complex diseases, such as cancer, arise as a result of genomic, epigenomic, transcriptomic, and proteomic alterations, integrative clustering methods for the simultaneous clustering of multiple 'omic' data types have great potential to aid in molecular subtype discovery. Traditionally, ad hoc manual data integration has been performed using the results obtained from the clustering of individual 'omic' data types on the same set of patient samples. However, such methods often result in inconsistent assignment of subjects to the molecular cancer subtypes. Recently, several methods have been proposed in the literature that offers a rigorous framework for the simultaneous integration of multiple 'omic' data types in a single comprehensive analysis. In this paper, we present a systematic review of existing integrative clustering methods. |
---|---|
AbstractList | High-throughput ‘omic’ data, such as gene expression, DNA methylation, DNA copy number, has played an instrumental role in furthering our understanding of the molecular basis in states of human health and disease. As cells with similar morphological characteristics can exhibit entirely different molecular profiles and because of the potential that these discrepancies might further our understanding of patient-level variability in clinical outcomes, there is significant interest in the use of high-throughput ‘omic’ data for the identification of novel molecular subtypes of a disease. While numerous clustering methods have been proposed for identifying of molecular subtypes, most were developed for single “omic’ data types and may not be appropriate when more than one ‘omic’ data type are collected on study subjects. Given that complex diseases, such as cancer, arise as a result of genomic, epigenomic, transcriptomic, and proteomic alterations, integrative clustering methods for the simultaneous clustering of multiple ‘omic’ data types have great potential to aid in molecular subtype discovery. Traditionally, ad hoc manual data integration has been performed using the results obtained from the clustering of individual ‘omic’ data types on the same set of patient samples. However, such methods often result in inconsistent assignment of subjects to the molecular cancer subtypes. Recently, several methods have been proposed in the literature that offers a rigorous framework for the simultaneous integration of multiple ‘omic’ data types in a single comprehensive analysis. In this paper, we present a systematic review of existing integrative clustering methods. |
Author | Yu, Qing Fridley, Brooke L Chalise, Prabhakar Koestler, Devin C Bimali, Milan |
Author_xml | – sequence: 1 givenname: Prabhakar surname: Chalise fullname: Chalise, Prabhakar organization: Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA – sequence: 2 givenname: Devin C surname: Koestler fullname: Koestler, Devin C organization: Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA – sequence: 3 givenname: Milan surname: Bimali fullname: Bimali, Milan organization: Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA – sequence: 4 givenname: Qing surname: Yu fullname: Yu, Qing organization: Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA – sequence: 5 givenname: Brooke L surname: Fridley fullname: Fridley, Brooke L organization: Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25243110$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkEFLw0AQhRep2Fr7FyTgOXF3s51NLoKWqoWCFwVvYZqdTbYkm5JNC_57i1XR0wzz5n083iUb-c4TYzeCJ2mus9tt4kLwiZQii0HDeyK5UAmHhKdnbHI85zFkPB197aeXMZuFsOWcSyEyxeGCjeVcqlQIPmEPKz9Q1ePgDhSVzT4M1DtfRS0NdWdCZLs-ql1Vx8a15IPrPDZR2zVU7hvsI4MDXrFzi02g2fecsrfH5eviOV6_PK0W9-t4JwGG2EqBVgJakaImrYwRaHQuN1BakhwVZvkxXq64Ia6lziTOCaAEgajI2HTK7k7c3X7TkinJDz02xa53LfYfRYeu-K94VxdVdyiUAFDHUqbs-i_g1_nTRvoJqB5qAA |
ContentType | Journal Article |
Copyright | Pioneer Bioscience Publishing Company. All rights reserved. |
Copyright_xml | – notice: Pioneer Bioscience Publishing Company. All rights reserved. |
DBID | NPM 5PM |
DOI | 10.3978/j.issn.2218-676X.2014.06.03 |
DatabaseName | PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2219-6803 |
EndPage | 216 |
ExternalDocumentID | PMC4166480 25243110 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R21 CA182715 – fundername: NCI NIH HHS grantid: P30 CA168524 – fundername: NIGMS NIH HHS grantid: P20 GM103418 |
GroupedDBID | NPM 53G 5PM ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL DIK PGMZT |
ID | FETCH-LOGICAL-p266t-f21af26af13a7e74dd1ad792b6cfe20a4a89840940de072782a5e66c61aa4edf3 |
ISSN | 2218-676X |
IngestDate | Thu Aug 21 18:10:33 EDT 2025 Fri Sep 17 22:38:26 EDT 2021 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | cophenetic correlation mixture models latent models non-negative matrix factorization Consensus clustering |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-p266t-f21af26af13a7e74dd1ad792b6cfe20a4a89840940de072782a5e66c61aa4edf3 |
PMID | 25243110 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4166480 pubmed_primary_25243110 |
PublicationCentury | 2000 |
PublicationDate | 2014-Jun-01 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-Jun-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Translational cancer research |
PublicationTitleAlternate | Transl Cancer Res |
PublicationYear | 2014 |
References | 22879375 - Nucleic Acids Res. 2012 Oct;40(19):9379-91 12761060 - Bioinformatics. 2003 May 22;19(8):973-80 15573120 - Nat Rev Cancer. 2004 Dec;4(12):988-93 12840046 - Genome Res. 2003 Jul;13(7):1706-18 12537558 - Genome Biol. 2002;3(12):RESEARCH0069 14711987 - Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6 20492682 - BMC Cancer. 2010 May 21;10 :227 12917485 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8 18595779 - J Biomed Inform. 2009 Feb;42(1):74-81 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5 11553815 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869-74 11934740 - Bioinformatics. 2002 Mar;18(3):413-22 18061589 - Comput Biol Med. 2008 Mar;38(3):283-93 18173289 - Anal Chem. 2008 Feb 1;80(3):665-74 10391217 - Nat Genet. 1999 Jul;22(3):281-5 15737073 - Biometrics. 2005 Mar;61(1):10-6 12011421 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6567-72 10077610 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2907-12 20834038 - Bioinformatics. 2010 Oct 15;26(20):2578-85 20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110 19126652 - Carcinogenesis. 2009 Mar;30(3):416-22 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9 12118244 - Nat Med. 2002 Aug;8(8):816-24 19698124 - BMC Bioinformatics. 2009 Aug 22;10:260 12416686 - Neural Netw. 2002 Oct-Nov;15(8-9):953-66 20802251 - Bioinformatics. 2010 Nov 1;26(21):2705-12 18234564 - J Biomed Inform. 2008 Aug;41(4):602-6 18662380 - Breast Cancer Res. 2008;10(4):R65 19759197 - Bioinformatics. 2009 Nov 15;25(22):2906-12 11786909 - Nat Med. 2002 Jan;8(1):68-74 10676951 - Nature. 2000 Feb 3;403(6769):503-11 24587839 - Ann Appl Stat. 2013 Apr 9;7(1):269-294 10712947 - Curr Opin Immunol. 2000 Apr;12(2):201-5 15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12 11673243 - Bioinformatics. 2001 Oct;17(10):977-87 11864371 - Genome Biol. 2002;3(2):RESEARCH0009 10548103 - Nature. 1999 Oct 21;401(6755):788-91 15094809 - PLoS Biol. 2004 Apr;2(4):E108 |
References_xml | – reference: 11553815 - Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869-74 – reference: 15914541 - Bioinformatics. 2005 Aug 1;21(15):3201-12 – reference: 20129251 - Cancer Cell. 2010 Jan 19;17(1):98-110 – reference: 12537558 - Genome Biol. 2002;3(12):RESEARCH0069 – reference: 18061589 - Comput Biol Med. 2008 Mar;38(3):283-93 – reference: 11934740 - Bioinformatics. 2002 Mar;18(3):413-22 – reference: 12416686 - Neural Netw. 2002 Oct-Nov;15(8-9):953-66 – reference: 18662380 - Breast Cancer Res. 2008;10(4):R65 – reference: 11707567 - Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13790-5 – reference: 11864371 - Genome Biol. 2002;3(2):RESEARCH0009 – reference: 10077610 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2907-12 – reference: 12917485 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10393-8 – reference: 20802251 - Bioinformatics. 2010 Nov 1;26(21):2705-12 – reference: 10712947 - Curr Opin Immunol. 2000 Apr;12(2):201-5 – reference: 15737073 - Biometrics. 2005 Mar;61(1):10-6 – reference: 12761060 - Bioinformatics. 2003 May 22;19(8):973-80 – reference: 20492682 - BMC Cancer. 2010 May 21;10 :227 – reference: 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9 – reference: 12118244 - Nat Med. 2002 Aug;8(8):816-24 – reference: 11786909 - Nat Med. 2002 Jan;8(1):68-74 – reference: 10676951 - Nature. 2000 Feb 3;403(6769):503-11 – reference: 19126652 - Carcinogenesis. 2009 Mar;30(3):416-22 – reference: 18595779 - J Biomed Inform. 2009 Feb;42(1):74-81 – reference: 9843981 - Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8 – reference: 22879375 - Nucleic Acids Res. 2012 Oct;40(19):9379-91 – reference: 15094809 - PLoS Biol. 2004 Apr;2(4):E108 – reference: 18173289 - Anal Chem. 2008 Feb 1;80(3):665-74 – reference: 12011421 - Proc Natl Acad Sci U S A. 2002 May 14;99(10):6567-72 – reference: 12840046 - Genome Res. 2003 Jul;13(7):1706-18 – reference: 19698124 - BMC Bioinformatics. 2009 Aug 22;10:260 – reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91 – reference: 18234564 - J Biomed Inform. 2008 Aug;41(4):602-6 – reference: 11673243 - Bioinformatics. 2001 Oct;17(10):977-87 – reference: 14711987 - Proc Natl Acad Sci U S A. 2004 Jan 20;101(3):811-6 – reference: 10391217 - Nat Genet. 1999 Jul;22(3):281-5 – reference: 15573120 - Nat Rev Cancer. 2004 Dec;4(12):988-93 – reference: 20834038 - Bioinformatics. 2010 Oct 15;26(20):2578-85 – reference: 19759197 - Bioinformatics. 2009 Nov 15;25(22):2906-12 – reference: 24587839 - Ann Appl Stat. 2013 Apr 9;7(1):269-294 |
SSID | ssj0002118406 |
Score | 2.110945 |
SecondaryResourceType | review_article |
Snippet | High-throughput 'omic' data, such as gene expression, DNA methylation, DNA copy number, has played an instrumental role in furthering our understanding of the... High-throughput ‘omic’ data, such as gene expression, DNA methylation, DNA copy number, has played an instrumental role in furthering our understanding of the... |
SourceID | pubmedcentral pubmed |
SourceType | Open Access Repository Index Database |
StartPage | 202 |
Title | Integrative clustering methods for high-dimensional molecular data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25243110 https://pubmed.ncbi.nlm.nih.gov/PMC4166480 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZB2MvY2O_um7DsL0FZbasSPLjFjbalZQOWuieiizJpCxJQ0j2UPbH706SbaWMsfVFBCWWHN_H6Tv57hMh7wvDmHSmolrpnPIK3-_WrqBCOC6ssE42WJw8PRGH5_zrxfhiMPiVVpds6pG5-WNdyV2sCn1gV6yS_Q_LdoNCB3wG-0ILFob2n2x8FLUeMPvHzLeoeYCRfzgV2gstDFGOmFqU8A_yG8NFex7uMJalddzUL1vzdnPQIBzWwygG1G0aT2aomBgqw9a6nukfukvvPb52-NJ4HfzYT6wnHPWb8AsdKrGnV_Mekd-32PWtXT_j9kPB-zSp4KUYcAQqpD-OEBaUtq-iQuVl6mbLBE1l6jJzlqy-LFRe3nbswJqUd-w4_qibE1PzuNdfLdOrwEqrhbc5GzNgSDFxdldX-3Q6ATIquMrvkftMAvNCSn103O3QQWgM0a8_nbCd7wF5F2_mw19uBQWm47wJr9nNuU1IzNlj8ihGH9nHAKUnZOCWT8mnBEZZD6MswigDGGW3YZR1MMoQRs_I-ZfPZ5NDGo_WoCtgZBvasEI3TOimKLV0kltbaCsrVgvTOJZrrlXlQ__cuhwormJ67IQwotCaO9uUz8ne8nrpXpLMMK3yMXiCSinOGqWlsVIqp52wMI7ZJy_CP79cBf2Uy_bh7BO580y6H6Dk-e43y6uZlz6PFnt15ysPyMMexa_J3ma9dW-AVm7qt9760J6cTn8DQNl8WA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+clustering+methods+for+high-dimensional+molecular+data&rft.jtitle=Translational+cancer+research&rft.au=Chalise%2C+Prabhakar&rft.au=Koestler%2C+Devin+C.&rft.au=Bimali%2C+Milan&rft.au=Yu%2C+Qing&rft.date=2014-06-01&rft.issn=2218-676X&rft.eissn=2219-6803&rft.volume=3&rft.issue=3&rft.spage=202&rft.epage=216&rft_id=info:doi/10.3978%2Fj.issn.2218-676X.2014.06.03&rft_id=info%3Apmid%2F25243110&rft.externalDocID=PMC4166480 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2218-676X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2218-676X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2218-676X&client=summon |