Dynamic Li+ Capture through Ligand‐Chain Interaction for the Regeneration of Depleted LiFePO4 Cathode

After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and environmental constraints. Therefore, direct regeneration has emerged as a promising alternative. However, irreversible phase changes can significantly...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 36; no. 14; pp. e2308927 - n/a
Main Authors Zhao, Xin‐Xin, Wang, Xiao‐Tong, Guo, Jin‐Zhi, Gu, Zhen‐Yi, Cao, Jun‐Ming, Yang, Jia‐Lin, Lu, Feng‐Qi, Zhang, Jing‐Ping, Wu, Xing‐Long
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2024
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202308927

Cover

Abstract After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and environmental constraints. Therefore, direct regeneration has emerged as a promising alternative. However, irreversible phase changes can significantly hinder the efficiency of the regeneration process owing to structural degradation. Moreover, improper storage and treatment practices can lead to metamorphism, further complicating the regeneration process. In this study, a sustainable recovery method is proposed for the electrochemical repair of LFP batteries. A ligand‐chain Zn‐complex (ZnDEA) is utilized as a structural regulator, with its ─NH─ group alternatingly facilitating the binding of preferential transition metal ions (Fe3+ during charging and Zn2+ during discharging). This dynamic coordination ability helps to modulate volume changes within the recovered LFP framework. Consequently, the recovered LFP framework can store more Li‐ions, enhance phase transition reversibility between LFP and FePO4 (FP), modify the initial Coulombic efficiency, and reduce polarization voltage differences. The recovered LFP cells exhibit excellent capacity retention of 96.30% after 1500 cycles at 2 C. The ligand chain repair mechanism promotes structural evolution to facilitate ion migration, providing valuable insights into the targeted ion compensation for environmentally friendly recycling in practical applications. The introduction of the ligand chain within the Zn complex dynamically modulates the variational structure, enlarging the main framework of LFP and expediting the de‐intercalation of Li+. This process revitalizes the composition, structure, and electrochemical performance of LFP, restoring them to levels comparable to that of newly produced LFP even under severe degradation conditions during the operation of regenerated batteries.
AbstractList After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and environmental constraints. Therefore, direct regeneration has emerged as a promising alternative. However, irreversible phase changes can significantly hinder the efficiency of the regeneration process owing to structural degradation. Moreover, improper storage and treatment practices can lead to metamorphism, further complicating the regeneration process. In this study, a sustainable recovery method is proposed for the electrochemical repair of LFP batteries. A ligand-chain Zn-complex (ZnDEA) is utilized as a structural regulator, with its ─NH─ group alternatingly facilitating the binding of preferential transition metal ions (Fe3+ during charging and Zn2+ during discharging). This dynamic coordination ability helps to modulate volume changes within the recovered LFP framework. Consequently, the recovered LFP framework can store more Li-ions, enhance phase transition reversibility between LFP and FePO4 (FP), modify the initial Coulombic efficiency, and reduce polarization voltage differences. The recovered LFP cells exhibit excellent capacity retention of 96.30% after 1500 cycles at 2 C. The ligand chain repair mechanism promotes structural evolution to facilitate ion migration, providing valuable insights into the targeted ion compensation for environmentally friendly recycling in practical applications.After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and environmental constraints. Therefore, direct regeneration has emerged as a promising alternative. However, irreversible phase changes can significantly hinder the efficiency of the regeneration process owing to structural degradation. Moreover, improper storage and treatment practices can lead to metamorphism, further complicating the regeneration process. In this study, a sustainable recovery method is proposed for the electrochemical repair of LFP batteries. A ligand-chain Zn-complex (ZnDEA) is utilized as a structural regulator, with its ─NH─ group alternatingly facilitating the binding of preferential transition metal ions (Fe3+ during charging and Zn2+ during discharging). This dynamic coordination ability helps to modulate volume changes within the recovered LFP framework. Consequently, the recovered LFP framework can store more Li-ions, enhance phase transition reversibility between LFP and FePO4 (FP), modify the initial Coulombic efficiency, and reduce polarization voltage differences. The recovered LFP cells exhibit excellent capacity retention of 96.30% after 1500 cycles at 2 C. The ligand chain repair mechanism promotes structural evolution to facilitate ion migration, providing valuable insights into the targeted ion compensation for environmentally friendly recycling in practical applications.
After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and environmental constraints. Therefore, direct regeneration has emerged as a promising alternative. However, irreversible phase changes can significantly hinder the efficiency of the regeneration process owing to structural degradation. Moreover, improper storage and treatment practices can lead to metamorphism, further complicating the regeneration process. In this study, a sustainable recovery method is proposed for the electrochemical repair of LFP batteries. A ligand‐chain Zn‐complex (ZnDEA) is utilized as a structural regulator, with its ─NH─ group alternatingly facilitating the binding of preferential transition metal ions (Fe3+ during charging and Zn2+ during discharging). This dynamic coordination ability helps to modulate volume changes within the recovered LFP framework. Consequently, the recovered LFP framework can store more Li‐ions, enhance phase transition reversibility between LFP and FePO4 (FP), modify the initial Coulombic efficiency, and reduce polarization voltage differences. The recovered LFP cells exhibit excellent capacity retention of 96.30% after 1500 cycles at 2 C. The ligand chain repair mechanism promotes structural evolution to facilitate ion migration, providing valuable insights into the targeted ion compensation for environmentally friendly recycling in practical applications. The introduction of the ligand chain within the Zn complex dynamically modulates the variational structure, enlarging the main framework of LFP and expediting the de‐intercalation of Li+. This process revitalizes the composition, structure, and electrochemical performance of LFP, restoring them to levels comparable to that of newly produced LFP even under severe degradation conditions during the operation of regenerated batteries.
After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and environmental constraints. Therefore, direct regeneration has emerged as a promising alternative. However, irreversible phase changes can significantly hinder the efficiency of the regeneration process owing to structural degradation. Moreover, improper storage and treatment practices can lead to metamorphism, further complicating the regeneration process. In this study, a sustainable recovery method is proposed for the electrochemical repair of LFP batteries. A ligand‐chain Zn‐complex (ZnDEA) is utilized as a structural regulator, with its ─NH─ group alternatingly facilitating the binding of preferential transition metal ions (Fe3+ during charging and Zn2+ during discharging). This dynamic coordination ability helps to modulate volume changes within the recovered LFP framework. Consequently, the recovered LFP framework can store more Li‐ions, enhance phase transition reversibility between LFP and FePO4 (FP), modify the initial Coulombic efficiency, and reduce polarization voltage differences. The recovered LFP cells exhibit excellent capacity retention of 96.30% after 1500 cycles at 2 C. The ligand chain repair mechanism promotes structural evolution to facilitate ion migration, providing valuable insights into the targeted ion compensation for environmentally friendly recycling in practical applications.
Author Wang, Xiao‐Tong
Guo, Jin‐Zhi
Yang, Jia‐Lin
Lu, Feng‐Qi
Zhang, Jing‐Ping
Cao, Jun‐Ming
Wu, Xing‐Long
Zhao, Xin‐Xin
Gu, Zhen‐Yi
Author_xml – sequence: 1
  givenname: Xin‐Xin
  surname: Zhao
  fullname: Zhao, Xin‐Xin
  organization: Northeast Normal University
– sequence: 2
  givenname: Xiao‐Tong
  surname: Wang
  fullname: Wang, Xiao‐Tong
  organization: Northeast Normal University
– sequence: 3
  givenname: Jin‐Zhi
  surname: Guo
  fullname: Guo, Jin‐Zhi
  organization: Northeast Normal University
– sequence: 4
  givenname: Zhen‐Yi
  surname: Gu
  fullname: Gu, Zhen‐Yi
  organization: Northeast Normal University
– sequence: 5
  givenname: Jun‐Ming
  surname: Cao
  fullname: Cao, Jun‐Ming
  organization: Northeast Normal University
– sequence: 6
  givenname: Jia‐Lin
  surname: Yang
  fullname: Yang, Jia‐Lin
  organization: Northeast Normal University
– sequence: 7
  givenname: Feng‐Qi
  surname: Lu
  fullname: Lu, Feng‐Qi
  organization: Guilin University of Technology
– sequence: 8
  givenname: Jing‐Ping
  surname: Zhang
  fullname: Zhang, Jing‐Ping
  organization: Northeast Normal University
– sequence: 9
  givenname: Xing‐Long
  orcidid: 0000-0003-1069-9145
  surname: Wu
  fullname: Wu, Xing‐Long
  email: xinglong@nenu.edu.cn
  organization: Northeast Normal University
BookMark eNpdkE1Lw0AQhhepYFu9eg54ESR1drO7yR5La7VQqYiel20yaVKS3ZgPpDd_gr_RX2JqxYOnYV6eeRmeERlYZ5GQSwoTCsBuTVKaCQMWQKRYeEKGVDDqc1BiQIagAuEryaMzMmqaHQAoCXJItvO9NWUee6v8xpuZqu1q9Nqsdt0267OtscnXx-csM7n1lrbF2sRt7qyXurrH0HvGLdo-_Qld6s2xKrDFpL9d4NOa951t5hI8J6epKRq8-J1j8rq4e5k9-Kv1_XI2XfkVkzL0uQLFgyBJORORUEqG6UbG0qRmA5xyjBIhcZOESQR0E6dKRkJEHFJhEEMW0WBMro-9Ve3eOmxaXeZNjEVhLLqu0UxRoCoU6oBe_UN3rqtt_50OIKAh55JDT6kj9Z4XuNdVnZem3msK-iBdH6TrP-l6On-c_m3BN6YxeVI
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202308927
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202308927
Genre article
GrantInformation_xml – fundername: Science and Technology Planning Project of Guangzhou City
  funderid: 2023B03J1278
– fundername: National Natural Science Foundation of China
  funderid: 52173246
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2412022QD038
– fundername: Postdoctoral Research Foundation of China
  funderid: 2023T160094
– fundername: National Key R&D Program of China
  funderid: 2023YFE0202000
– fundername: Natural Science Foundation of Jilin Province
  funderid: 20230101128JC; 20230508177RC
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2667-4909433df425859967fb6c6afab0414e8d56ebd7d801bcf96855840f5aee72813
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:31:38 EDT 2025
Sat Jul 26 02:14:21 EDT 2025
Wed Jan 22 16:12:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2667-4909433df425859967fb6c6afab0414e8d56ebd7d801bcf96855840f5aee72813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1069-9145
PQID 3031744640
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2910197591
proquest_journals_3031744640
wiley_primary_10_1002_adma_202308927_ADMA202308927
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022 2020; 169 56
2022 2023; 35 5
2023; 13
2023; 33
2023; 16
2021 2022 2022; 3 34 50
2023 2023 2023; 1 166 16
2023; 348
2019 2020 2020; 12 4 22
2022 2021; 23 11
2022 2022; 431 144
2020 2021 2020; 13 12 67
2022; 319
2021 2021; 33 413
2021 2022 2023; 13 61 35
2023; 60
2023 2023 2022; 471 16 24
2022 2022; 379 913
2023 2022 2022; 14 12 34
2021 2021; 23 316
2022; 7
2017; 56
2023 2023 2022 2022; 35 14 24 61
2022 2023; 24 11
2021 2021 2022; 9 160 24
2022; 32
2022; 10
2021 2023 2021; 136 471 9
2021 2021; 81 12
2021; 40
2023 2023 2022; 16 587 450
2023 2023 2023; 466 9 6
2022; 169
References_xml – volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 16 587 450
  start-page: 2561
  year: 2023 2023 2022
  publication-title: Energy Environ. Sci. Chem. Eng. J. Chem. Eng. J.
– volume: 35 14 24 61
  start-page: 584 4544 3831
  year: 2023 2023 2022 2022
  publication-title: Adv. Mater. Nat. Commun. Green Chem. Ind. Eng. Chem. Res.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 14 12 34
  start-page: 4648
  year: 2023 2022 2022
  publication-title: Nat. Commun. Adv. Energy Mater. Adv. Mater.
– volume: 16
  start-page: 3302
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 3 34 50
  start-page: 827 4142 760
  year: 2021 2022 2022
  publication-title: Infomat Chem. Mater. Energy Storage Mater.
– volume: 136 471 9
  start-page: 67 4711
  year: 2021 2023 2021
  publication-title: Waste Manage. Chem. Eng. J. ACS Sustainable Chem. Eng.
– volume: 12 4 22
  start-page: 2672 2609 8633
  year: 2019 2020 2020
  publication-title: Energy Environ. Sci. Joule Green Chem.
– volume: 23 11
  year: 2022 2021
  publication-title: Mater. Today Energy Adv. Energy Mater.
– volume: 471 16 24
  start-page: 745 7448
  year: 2023 2023 2022
  publication-title: Chem. Eng. J. Energy Environ. Sci. Green Chem.
– volume: 7
  start-page: 1648
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 56
  year: 2017
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  year: 2022
  publication-title: ACS Sustainable Chem. Eng.
– volume: 379 913
  year: 2022 2022
  publication-title: J. Cleaner Prod. J. Electroanal. Chem.
– volume: 1 166 16
  start-page: 254 70 3873
  year: 2023 2023 2023
  publication-title: Ind. Chem. Mater. Waste Manage. Energy Environ. Sci.
– volume: 35 5
  start-page: 1189
  year: 2022 2023
  publication-title: Adv. Mater. CCS Chem.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9 160 24
  start-page: 3979 2506
  year: 2021 2021 2022
  publication-title: ACS Sustainable Chem. Eng. Chem. Eng. Process. Green Chem.
– volume: 13 12 67
  start-page: 1788 838
  year: 2020 2021 2020
  publication-title: Energy Environ. Sci. Nat. Commun. Nano Energy
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 81 12
  year: 2021 2021
  publication-title: Nano Energy Adv. Energy Mater.
– volume: 24 11
  start-page: 6278 9057
  year: 2022 2023
  publication-title: Green Chem. J. Mater. Chem. A
– volume: 466 9 6
  start-page: 422 49
  year: 2023 2023 2023
  publication-title: Chem. Eng. J. Batteries Commun. Chem.
– volume: 40
  start-page: 3477
  year: 2021
  publication-title: Rare Met.
– volume: 169 56
  start-page: 245
  year: 2022 2020
  publication-title: J. Electrochem. Soc. Chem. Commun.
– volume: 33 413
  year: 2021 2021
  publication-title: Adv. Mater. Chem. Eng. J.
– volume: 348
  year: 2023
  publication-title: J. Environ. Manage.
– volume: 60
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 13 61 35
  year: 2021 2022 2023
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Mater.
– volume: 431 144
  start-page: 303
  year: 2022 2022
  publication-title: Chem. Eng. J. Waste Manage.
– volume: 23 316
  start-page: 3963
  year: 2021 2021
  publication-title: Green Chem. J. Cleaner Prod.
– volume: 319
  year: 2022
  publication-title: J. Environ. Manage.
SSID ssj0009606
Score 2.6408646
Snippet After application in electric vehicles, spent LiFePO4 (LFP) batteries are typically decommissioned. Traditional recycling methods face economic and...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2308927
SubjectTerms dynamic Li compensation
Electric vehicles
Ion migration
LiFePO4 cathode
Ligands
ligand‐chain repair
Lithium-ion batteries
Phase transitions
Regeneration
spent Li‐ion batteries
sustainable recovery
Transition metals
Title Dynamic Li+ Capture through Ligand‐Chain Interaction for the Regeneration of Depleted LiFePO4 Cathode
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202308927
https://www.proquest.com/docview/3031744640
https://www.proquest.com/docview/2910197591
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCjMSGAoljO8lYtVQV4iUEEltkx-eCkNKKtgsTP4HfyC_h7KQPGGFLnJzk2He572zfd4SccF1wsNwG6E-LgEsjgqxgcSB0mmTG2DjyJVmub2TvkV8-iaeFLP6KH2K24OYsw_-vnYErPTqfk4Yq43mDEEKnGXPp5FEsfUx1P-ePcvDck-3F2AXJ0ylrY8jOf4r_wJeLKNW7me46UdMOVqdLXs8mY31WvP_ibvzPF2yQtRqD0lalNJtkCcotsrrATLhN-p2qUj29ejmlbTV0-wy0rumDbX1Vmq-Pz_azeimpX1Ss8iMoQmB8Deg99D2ftW8cWNqBISoIGJTtwt0tpy7zcGBghzx2Lx7avaCuyRAM0ZUnAc_cUcTYWLT11FG7JFbLQiqrdMgjDqkRErRJDHo-XdhMpgIhTmiFAkhYGsW7ZLkclLBHqM0wPlahZmkhuQahEsdmhhGr4MDihDdIczoneW1Yoxw9LsZQXPKwQY5nj9Ek3D6HKmEwGeUMIVCUJSKLGoT5CciHFXVHXpE0s9wNfT4b-rzVuW7N7vb_InRAVvC6PtPTJMvjtwkcIlwZ6yOvkt8x_-HW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxEB5BOQAH_isCLRiJG9o26_XP7jFKGgVICqpaiZtlr8ehQtpENLlw4hF4xj5Jx95N2nKE487aktfj2fnGHn8D8F64WmAQISN_WmdCeZlVNS8y6UpdeR-KPJVkmR2ryZn49E1usgnjXZiWH2K74RYtI_2vo4HHDenDa9ZQ6xNxEGHosuL6LtwTioKViItOrhmkIkBPdHsFDUKJcsPb2OeHt_vfQpg3cWpyNOPH4DZDbPNLfhysV-6g_vUXe-N_fcMTeNTBUDZo181TuIPNM3h4g5zwOcxHbbF6Nj3_wIZ2GY8aWFfWh2Rz2_jL33-G3-15w9K-YntFghEKpmbITnCeKK2TcBHYCJe0RtBT3zF-_SJYvHy48PgCzsZHp8NJ1pVlyJbkzXUmqpiNWPhA5l5GdhcdnKqVDdb1RS6w9FKh89qT83N1qFQpCeX0g7SImpd5sQs7zaLBl8BCRSGy7Tte1ko4lFZHQjMKWqVAXmjRg72NUkxnWxeGnC6FUVHZPXi3fU1WEY86bIOL9YXhhILySssq7wFPGjDLlr3DtDzN3MSpN9upN4PRbLB9evUvnd7C_cnpbGqmH48_v4YHJO9SfPZgZ_VzjfuEXlbuTVqfV3FB5fc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMctKBKCQ_msWChgJG4obeLYsX1cbVgVaEtVUYmbZcfjpULKRu3upSceoc_YJ-nYyW5bjnCME0uJ7cn8bY9_Q8hH7hoOgYcM_WmT8cqLTDeszIRTUnsfyiKlZDk4rPZO-NefYhVNGM_C9HyI9YJbtIz0v44GDp0PuzfUUOsTOAg1tNJM3icPuNAqRvXVxzcEqSjQE26vxJeouFpxG3O2e7f-HYV5W6cmRzN9QtzqFfv4kt87y4XbaS7-ojf-1zc8JZuDDKXjftw8I_egfU4e34ITviCzuk9WT_dPP9GJ7eJWAx3S-mDZzLb-6s_l5Jc9bWlaV-yPSFBUwfgY0GOYJaR1KpwHWkOHYwQ81p3C0XdO4-HDuYeX5GT6-cdkLxvSMmQdenOZcR2jEUsf0NxVpLvI4KqmssG6nBcclBcVOC89Oj_XBF0pgSonD8ICSKaKcotstPMWXhEaNE6Rbe6YairuQFgZgWY4aRUcWCn5iGyvOsUMtnVu0OniNIpXPB-RD-vbaBVxq8O2MF-eG4YqqNBS6GJEWOoB0_X0DtNzmpmJTW_WTW_G9cF4ffX6Xyq9Jw-P6qnZ_3L47Q15hMVDhM822VicLeEtipeFe5eG5zU69uV7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Li%2B+Capture+through+Ligand%E2%80%90Chain+Interaction+for+the+Regeneration+of+Depleted+LiFePO4+Cathode&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhao%2C+Xin%E2%80%90Xin&rft.au=Wang%2C+Xiao%E2%80%90Tong&rft.au=Guo%2C+Jin%E2%80%90Zhi&rft.au=Gu%2C+Zhen%E2%80%90Yi&rft.date=2024-04-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202308927&rft.externalDBID=10.1002%252Fadma.202308927&rft.externalDocID=ADMA202308927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon