All‐Transfer Electrode Interface Engineering Toward Harsh‐Environment‐Resistant MoS2 Field‐Effect Transistors
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 18; pp. e2210735 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202210735 |
Cover
Abstract | Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode–channel interfaces. Here, harsh‐environment‐resistant MoS2 transistors are developed by engineering electrode–channel interfaces with an all‐transfer of van der Waals electrodes. The delivered defect‐free, graphene‐buffered electrodes keep the electrode–channel interfaces intact and robust. As a result, the as‐fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on‐state current and high carrier mobility. More importantly, the defect‐free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode–MoS2 interfaces. This enables high resistances of MoS2 devices with all‐transfer electrodes to various harsh environments, including humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode–channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh‐environment‐resistant devices.
Harsh‐environment‐resistant MoS2 field‐effect transistors are demonstrated by engineering the electrode–channel interfaces with an all‐transfer technique of van der Waals electrodes. The intact and defect‐free interfaces not only reduce the Schottky barrier height at electrodes, but enable high resistances of the MoS2 devices to humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. |
---|---|
AbstractList | Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode–channel interfaces. Here, harsh‐environment‐resistant MoS2 transistors are developed by engineering electrode–channel interfaces with an all‐transfer of van der Waals electrodes. The delivered defect‐free, graphene‐buffered electrodes keep the electrode–channel interfaces intact and robust. As a result, the as‐fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on‐state current and high carrier mobility. More importantly, the defect‐free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode–MoS2 interfaces. This enables high resistances of MoS2 devices with all‐transfer electrodes to various harsh environments, including humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode–channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh‐environment‐resistant devices.
Harsh‐environment‐resistant MoS2 field‐effect transistors are demonstrated by engineering the electrode–channel interfaces with an all‐transfer technique of van der Waals electrodes. The intact and defect‐free interfaces not only reduce the Schottky barrier height at electrodes, but enable high resistances of the MoS2 devices to humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode–channel interfaces. Here, harsh‐environment‐resistant MoS2 transistors are developed by engineering electrode–channel interfaces with an all‐transfer of van der Waals electrodes. The delivered defect‐free, graphene‐buffered electrodes keep the electrode–channel interfaces intact and robust. As a result, the as‐fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on‐state current and high carrier mobility. More importantly, the defect‐free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode–MoS2 interfaces. This enables high resistances of MoS2 devices with all‐transfer electrodes to various harsh environments, including humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode–channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh‐environment‐resistant devices. Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices. |
Author | Wang, Bolun Shi, Run Liu, Yiqun Wang, Enze Peng, Ruixuan Xin, Zeqin Zhang, Zhibin Liu, Kaihui Liu, Kai Wu, Yonghuang Guo, Jing |
Author_xml | – sequence: 1 givenname: Yonghuang surname: Wu fullname: Wu, Yonghuang organization: Tsinghua University – sequence: 2 givenname: Zeqin surname: Xin fullname: Xin, Zeqin organization: Tsinghua University – sequence: 3 givenname: Zhibin surname: Zhang fullname: Zhang, Zhibin organization: Peking University – sequence: 4 givenname: Bolun surname: Wang fullname: Wang, Bolun organization: Tsinghua University – sequence: 5 givenname: Ruixuan surname: Peng fullname: Peng, Ruixuan organization: Tsinghua University – sequence: 6 givenname: Enze surname: Wang fullname: Wang, Enze organization: Tsinghua University – sequence: 7 givenname: Run surname: Shi fullname: Shi, Run organization: Tsinghua University – sequence: 8 givenname: Yiqun surname: Liu fullname: Liu, Yiqun organization: Tsinghua University – sequence: 9 givenname: Jing surname: Guo fullname: Guo, Jing organization: Tsinghua University – sequence: 10 givenname: Kaihui surname: Liu fullname: Liu, Kaihui organization: Peking University – sequence: 11 givenname: Kai orcidid: 0000-0002-0638-5189 surname: Liu fullname: Liu, Kai email: liuk@tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNpdkc1OwzAQhC1UJMrPlXMkLlwC65849rGCFpBASFDOlpusS1BqFzul4sYj8Iw8CSmgHjitRvvt7EizTwY-eCTkmMIZBWDntl7YMwaMUSh5sUOGtGA0F6CLARmC5kWupVB7ZD-lFwDQEuSQrEZt-_XxOY3WJ4cxG7dYdTHUmN34DqOzFWZjP288Ymz8PJuGtY11dm1jeu7vxv6ticEv0He9esDUpM76LrsLjyybNNjWG8i53jT7-dHvQ0yHZNfZNuHR3zwgT5Px9OI6v72_urkY3eZLJmWRu4JDATPKoEQphFJ6ZvWsEprVlZLCKV1ZiVw55ahUTs8kd1YgllwrRCv4ATn99V3G8LrC1JlFkypsW-sxrJJhpSxpybjgPXryD30Jq-j7dIYp0ECB0bKn9C-1blp8N8vYLGx8NxTMpgKzqcBsKzCjy7vRVvFv9jyDRA |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202210735 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202210735 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51972193; 52025023 – fundername: Guangdong Major Project of Basic and Applied Basic Research funderid: 2021B0301030002 – fundername: National Key R&D Program of China funderid: 2018YFA0208401 – fundername: Tsinghua University Initiative Scientific Research Program – fundername: Basic Science Center Project of NSFC funderid: 51788104 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-p2665-f53050b1207e644889ba9bc492dc864f89ca6e38f8f168f9b63fa4ee7398eea43 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:48:55 EDT 2025 Sun Jul 13 04:10:16 EDT 2025 Wed Jan 22 16:23:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2665-f53050b1207e644889ba9bc492dc864f89ca6e38f8f168f9b63fa4ee7398eea43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0638-5189 |
PQID | 2809010217 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2767172343 proquest_journals_2809010217 wiley_primary_10_1002_adma_202210735_ADMA202210735 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2019; 11 2015; 30 2020; 15 2020; 14 2020; 12 2020; 11 1996; 77 2020; 6 2014; 5 2020; 3 2013; 13 2022; 34 2014; 14 2021; 593 2014; 8 2010; 4 2017; 62 2021; 7 2015; 14 2021; 4 2012; 100 1991; 254 2019; 31 2020; 581 2019; 2 2015; 10 2009 1988; 11 2004; 427 2015; 7 1995; 193 1996; 54 2016; 12 2021; 13 2001; 81 2015; 26 2016; 1 2018; 557 2022 2022; 5 2017; 11 2010; 132 2016; 530 2017 2014; 35 1996; 357 2016; 28 2018; 10 2019; 573 2016; 8 |
References_xml | – volume: 14 start-page: 1195 year: 2015 publication-title: Nat. Mater. – year: 2009 – volume: 15 start-page: 545 year: 2020 publication-title: Nat. Nanotechnol. – volume: 254 start-page: 81 year: 1991 publication-title: Surf. Sci. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 530 start-page: 144 year: 2016 publication-title: Nature – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3055 year: 2014 publication-title: Nano Lett. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 62 start-page: 1074 year: 2017 publication-title: Sci. Bull. – volume: 4 start-page: 2214 year: 2013 publication-title: Nat. Commun. – volume: 8 start-page: 476 year: 2014 publication-title: ACS Nano – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 193 start-page: 222 year: 1995 publication-title: J. Non‐Cryst. Solids – volume: 28 start-page: 8302 year: 2016 publication-title: Adv. Mater. – volume: 14 start-page: 6232 year: 2020 publication-title: ACS Nano – volume: 557 start-page: 696 year: 2018 publication-title: Nature – volume: 10 start-page: 3540 year: 2018 publication-title: Nanoscale – volume: 593 start-page: 211 year: 2021 publication-title: Nature – volume: 54 year: 1996 publication-title: Phys. Rev. B – year: 2022 – volume: 30 start-page: 2456 year: 2015 publication-title: IEEE Trans Power Electron – volume: 427 start-page: 53 year: 2004 publication-title: Nature – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 2 start-page: 187 year: 2019 publication-title: Nat. Electron. – volume: 26 start-page: 9226 year: 2015 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 35 start-page: 599 year: 2014 publication-title: IEEE Electron Device Lett. – volume: 10 start-page: 534 year: 2015 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 120 year: 2016 publication-title: Small – volume: 573 start-page: 507 year: 2019 publication-title: Nature – volume: 4 start-page: 786 year: 2021 publication-title: Nat. Electron. – volume: 357 start-page: 170 year: 1996 publication-title: Surf. Sci. – volume: 8 start-page: 8289 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 241 year: 2022 publication-title: Nat. Electron. – volume: 4 start-page: 2695 year: 2010 publication-title: ACS Nano – volume: 5 start-page: 849 year: 2022 publication-title: Nat. Electron. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 5 start-page: 5678 year: 2014 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 5031 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 100 year: 2013 publication-title: Nano Lett. – volume: 3 start-page: 207 year: 2020 publication-title: Nat. Electron. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 563 year: 1988 publication-title: Surf. Interface Anal. – volume: 81 start-page: 2253 year: 2001 publication-title: J. Appl. Polym. Sci. – volume: 4 start-page: 495 year: 2021 publication-title: Nat. Electron. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 581 start-page: 406 year: 2020 publication-title: Nature – volume: 11 start-page: 5689 year: 2020 publication-title: Nat. Commun. – year: 2017 – volume: 11 start-page: 2453 year: 2020 publication-title: Nat. Commun. – volume: 11 start-page: 1588 year: 2017 publication-title: ACS Nano – volume: 132 year: 2010 publication-title: J. Chem. Phys. |
SSID | ssj0009606 |
Score | 2.5484285 |
Snippet | Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free... Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2210735 |
SubjectTerms | Avionics Buffer layers Carrier mobility Current carriers Defects Diffusion layers Electrodes Electronic devices field‐effect transistors Graphene harsh‐environment resistance interface engineering Molybdenum disulfide Nanotechnology devices Oxidation Semiconductor devices Transistors van der Waals electrodes |
Title | All‐Transfer Electrode Interface Engineering Toward Harsh‐Environment‐Resistant MoS2 Field‐Effect Transistors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210735 https://www.proquest.com/docview/2809010217 https://www.proquest.com/docview/2767172343 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCjMQaSGzHsccKWlVIZSitxBbZzllIoBT1sTDxE_iN_BJsp00DI4xWfLKj873su-8QuuIxSGOKJBKFcgFKEnsMSMMjbTw0CMmkKfx9x-CB98fs_il9alTxV_gQ9YWbl4ygr72AKz27WYOGqiLgBhEXs2TUV5knNA3vtMM1fpR3zwPYHk3dFphYoTbG5OYn-Q__sumlBjPT20VqtcEqu-TlejHX1-b9F3bjf_5gD-0sfVDcqQ7NPtqA8gBtN5AJD9Gi8_r69fEZLJmFKe5W3XIKwOEK0SoDuEGARyH7FvddmPzs6Lrr8jk3GsLMe6nlHA8mjwT3fNKcnxRSSXBYI4CVzI7QuNcd3fajZYeG6M0Z9jSyqVMXsU5InIEP9ITUSmrDJCmM4MwKaRQHKqywCRdWak6tYgAZlQJAMXqMNstJCScIO8VgKLXS6sLFnJZrQ4CBTK1bRxpgLdRecShfitksJyKWoTl51kKX9WcnIP7VQ5UwWbg5GXchK6GMthAJ7MjfKiCPvIJsJrlnRF4zIu_cDTr16PQvRGdoy7elrxIj22hzPl3AuXNe5voiHNBvqefsgA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOZQegBaqBgq4EtdNNrbXax8jmihA00NJJW6rtXcsJKpNlMelp_6E_sb-knq8eZUjHK31yF6N5-nxNwBfVIrGuaqb6KoMAUo3JQxIpxLrCBqE58ZVlO8YXarhtfz-K1tXE9JbmAYfYpNwI8mI-poEnBLSnS1qaFlF4CAegpZcZM_hBV3SkWyeX20RpMhBj3B7IgubkHqN25jyzlP6Jx7mrp8aDc3gNdj1Fpv6kj_t5cK23e1f6I3_9Q9v4NXKDWW95twcwjOsj-BgB5zwLSx7NzcPd_fRmHmcsX7TMKdCFrOIvnTIdgjYOBbgsmGIlH8Huv72BV0YXeGcHNV6wUaTn5wNqG6OJsVqEhbXiHgl83dwPeiPvw6TVZOGZBpse5b4LGiM1HZ5miPFetrY0lgnDa-cVtJr40qFQnvtu0p7Y5XwpUTMhdGIpRTHsFdPajwBFnSDE8Ibb6sQdnplHUeJJvNhHeNQtuB0zaJiJWnzguvUxP7keQvONp-DjNDFR1njZBnm5CpErVxI0QIe-VFMGyyPokFt5gUxotgwouidj3qb0ft_IfoM-8Px6KK4-Hb54wO8pC71TZ3kKewtZkv8GHyZhf0UT-sjbAPwnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB21VKrKAUpbRPgortTrwsb2eu1jRBKFlkSIgsRtZXvHQgJtIpJcOPET-I38EmxvvuBYjqv1yF6Nx37PO34D8FukqKwtm4kstScozTRoQFqRGBukQWiubBnOO_oD0bvif66z65Vb_LU-xOLALURGXK9DgI9Kd7wUDdVl1A2inrPkLPsIn7jwFCvAooulgFTA51Ftj2V-DFzOZRtTevza_hXAXIWpcZ_pboKej7BOL7k9mk7MkX14I974nk_4ChszEEpa9azZgg9YfYP1FWnC7zBt3d09Pz7FrczhPenU5XJKJPEM0WmLZMWAXMb0W9LzPPnG23WW9-f80wWOA0ytJqQ__EdJN2TNhUYxl4TEPqJayfgHXHU7lye9ZFaiIRn5nT1LXObXi9Q0aZpjYHpSGa2M5YqWVgrupLJaIJNOuqaQThnBnOaIOVMSUXO2DWvVsMIdIH5lsIw55UzpSacTxlLkqDLn-1EWeQP25x4qZnE2LqhMVaxOnjfg1-K1j5Dw20NXOJz6NrnwnJUyzhpAozuKUa3kUdSazbQIjigWjiha7X5r8bT7P0aH8Pm83S3OTgd_9-BLKFFfJ0nuw9rkfooHHshMzM84V18Ask_vSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-Transfer+Electrode+Interface+Engineering+Toward+Harsh-Environment-Resistant+MoS2+Field-Effect+Transistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Yonghuang&rft.au=Xin%2C+Zeqin&rft.au=Zhang%2C+Zhibin&rft.au=Wang%2C+Bolun&rft.date=2023-05-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=18&rft.spage=e2210735&rft_id=info:doi/10.1002%2Fadma.202210735&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |