All‐Transfer Electrode Interface Engineering Toward Harsh‐Environment‐Resistant MoS2 Field‐Effect Transistors

Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 18; pp. e2210735 - n/a
Main Authors Wu, Yonghuang, Xin, Zeqin, Zhang, Zhibin, Wang, Bolun, Peng, Ruixuan, Wang, Enze, Shi, Run, Liu, Yiqun, Guo, Jing, Liu, Kaihui, Liu, Kai
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202210735

Cover

Abstract Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode–channel interfaces. Here, harsh‐environment‐resistant MoS2 transistors are developed by engineering electrode–channel interfaces with an all‐transfer of van der Waals electrodes. The delivered defect‐free, graphene‐buffered electrodes keep the electrode–channel interfaces intact and robust. As a result, the as‐fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on‐state current and high carrier mobility. More importantly, the defect‐free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode–MoS2 interfaces. This enables high resistances of MoS2 devices with all‐transfer electrodes to various harsh environments, including humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode–channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh‐environment‐resistant devices. Harsh‐environment‐resistant MoS2 field‐effect transistors are demonstrated by engineering the electrode–channel interfaces with an all‐transfer technique of van der Waals electrodes. The intact and defect‐free interfaces not only reduce the Schottky barrier height at electrodes, but enable high resistances of the MoS2 devices to humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes.
AbstractList Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode–channel interfaces. Here, harsh‐environment‐resistant MoS2 transistors are developed by engineering electrode–channel interfaces with an all‐transfer of van der Waals electrodes. The delivered defect‐free, graphene‐buffered electrodes keep the electrode–channel interfaces intact and robust. As a result, the as‐fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on‐state current and high carrier mobility. More importantly, the defect‐free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode–MoS2 interfaces. This enables high resistances of MoS2 devices with all‐transfer electrodes to various harsh environments, including humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode–channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh‐environment‐resistant devices. Harsh‐environment‐resistant MoS2 field‐effect transistors are demonstrated by engineering the electrode–channel interfaces with an all‐transfer technique of van der Waals electrodes. The intact and defect‐free interfaces not only reduce the Schottky barrier height at electrodes, but enable high resistances of the MoS2 devices to humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes.
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free interfaces are of vital importance for building nanoscale harsh‐environment‐resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode–channel interfaces. Here, harsh‐environment‐resistant MoS2 transistors are developed by engineering electrode–channel interfaces with an all‐transfer of van der Waals electrodes. The delivered defect‐free, graphene‐buffered electrodes keep the electrode–channel interfaces intact and robust. As a result, the as‐fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on‐state current and high carrier mobility. More importantly, the defect‐free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode–MoS2 interfaces. This enables high resistances of MoS2 devices with all‐transfer electrodes to various harsh environments, including humid, oxidizing, and high‐temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode–channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh‐environment‐resistant devices.
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free interfaces are of vital importance for building nanoscale harsh-environment-resistant devices. However, current nanoscale devices are subject to failure in these environments, especially at defective electrode-channel interfaces. Here, harsh-environment-resistant MoS2 transistors are developed by engineering electrode-channel interfaces with an all-transfer of van der Waals electrodes. The delivered defect-free, graphene-buffered electrodes keep the electrode-channel interfaces intact and robust. As a result, the as-fabricated MoS2 devices have reduced Schottky barrier heights, leading to a very large on-state current and high carrier mobility. More importantly, the defect-free, hydrophobic graphene buffer layer prevents metal diffusion from the electrodes to MoS2 and the intercalation of water molecules at the electrode-MoS2 interfaces. This enables high resistances of MoS2 devices with all-transfer electrodes to various harsh environments, including humid, oxidizing, and high-temperature environments, surpassing the devices with other kinds of electrodes. The work deepens the understanding of the roles of electrode-channel interfaces in nanoscale devices and provides a promising interface engineering strategy to build nanoscale harsh-environment-resistant devices.
Author Wang, Bolun
Shi, Run
Liu, Yiqun
Wang, Enze
Peng, Ruixuan
Xin, Zeqin
Zhang, Zhibin
Liu, Kaihui
Liu, Kai
Wu, Yonghuang
Guo, Jing
Author_xml – sequence: 1
  givenname: Yonghuang
  surname: Wu
  fullname: Wu, Yonghuang
  organization: Tsinghua University
– sequence: 2
  givenname: Zeqin
  surname: Xin
  fullname: Xin, Zeqin
  organization: Tsinghua University
– sequence: 3
  givenname: Zhibin
  surname: Zhang
  fullname: Zhang, Zhibin
  organization: Peking University
– sequence: 4
  givenname: Bolun
  surname: Wang
  fullname: Wang, Bolun
  organization: Tsinghua University
– sequence: 5
  givenname: Ruixuan
  surname: Peng
  fullname: Peng, Ruixuan
  organization: Tsinghua University
– sequence: 6
  givenname: Enze
  surname: Wang
  fullname: Wang, Enze
  organization: Tsinghua University
– sequence: 7
  givenname: Run
  surname: Shi
  fullname: Shi, Run
  organization: Tsinghua University
– sequence: 8
  givenname: Yiqun
  surname: Liu
  fullname: Liu, Yiqun
  organization: Tsinghua University
– sequence: 9
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: Tsinghua University
– sequence: 10
  givenname: Kaihui
  surname: Liu
  fullname: Liu, Kaihui
  organization: Peking University
– sequence: 11
  givenname: Kai
  orcidid: 0000-0002-0638-5189
  surname: Liu
  fullname: Liu, Kai
  email: liuk@tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNpdkc1OwzAQhC1UJMrPlXMkLlwC65849rGCFpBASFDOlpusS1BqFzul4sYj8Iw8CSmgHjitRvvt7EizTwY-eCTkmMIZBWDntl7YMwaMUSh5sUOGtGA0F6CLARmC5kWupVB7ZD-lFwDQEuSQrEZt-_XxOY3WJ4cxG7dYdTHUmN34DqOzFWZjP288Ymz8PJuGtY11dm1jeu7vxv6ticEv0He9esDUpM76LrsLjyybNNjWG8i53jT7-dHvQ0yHZNfZNuHR3zwgT5Px9OI6v72_urkY3eZLJmWRu4JDATPKoEQphFJ6ZvWsEprVlZLCKV1ZiVw55ahUTs8kd1YgllwrRCv4ATn99V3G8LrC1JlFkypsW-sxrJJhpSxpybjgPXryD30Jq-j7dIYp0ECB0bKn9C-1blp8N8vYLGx8NxTMpgKzqcBsKzCjy7vRVvFv9jyDRA
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202210735
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202210735
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51972193; 52025023
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  funderid: 2021B0301030002
– fundername: National Key R&D Program of China
  funderid: 2018YFA0208401
– fundername: Tsinghua University Initiative Scientific Research Program
– fundername: Basic Science Center Project of NSFC
  funderid: 51788104
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-p2665-f53050b1207e644889ba9bc492dc864f89ca6e38f8f168f9b63fa4ee7398eea43
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:48:55 EDT 2025
Sun Jul 13 04:10:16 EDT 2025
Wed Jan 22 16:23:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2665-f53050b1207e644889ba9bc492dc864f89ca6e38f8f168f9b63fa4ee7398eea43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0638-5189
PQID 2809010217
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2767172343
proquest_journals_2809010217
wiley_primary_10_1002_adma_202210735_ADMA202210735
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2019; 11
2015; 30
2020; 15
2020; 14
2020; 12
2020; 11
1996; 77
2020; 6
2014; 5
2020; 3
2013; 13
2022; 34
2014; 14
2021; 593
2014; 8
2010; 4
2017; 62
2021; 7
2015; 14
2021; 4
2012; 100
1991; 254
2019; 31
2020; 581
2019; 2
2015; 10
2009
1988; 11
2004; 427
2015; 7
1995; 193
1996; 54
2016; 12
2021; 13
2001; 81
2015; 26
2016; 1
2018; 557
2022
2022; 5
2017; 11
2010; 132
2016; 530
2017
2014; 35
1996; 357
2016; 28
2018; 10
2019; 573
2016; 8
References_xml – volume: 14
  start-page: 1195
  year: 2015
  publication-title: Nat. Mater.
– year: 2009
– volume: 15
  start-page: 545
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 254
  start-page: 81
  year: 1991
  publication-title: Surf. Sci.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 530
  start-page: 144
  year: 2016
  publication-title: Nature
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3055
  year: 2014
  publication-title: Nano Lett.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 62
  start-page: 1074
  year: 2017
  publication-title: Sci. Bull.
– volume: 4
  start-page: 2214
  year: 2013
  publication-title: Nat. Commun.
– volume: 8
  start-page: 476
  year: 2014
  publication-title: ACS Nano
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 193
  start-page: 222
  year: 1995
  publication-title: J. Non‐Cryst. Solids
– volume: 28
  start-page: 8302
  year: 2016
  publication-title: Adv. Mater.
– volume: 14
  start-page: 6232
  year: 2020
  publication-title: ACS Nano
– volume: 557
  start-page: 696
  year: 2018
  publication-title: Nature
– volume: 10
  start-page: 3540
  year: 2018
  publication-title: Nanoscale
– volume: 593
  start-page: 211
  year: 2021
  publication-title: Nature
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– year: 2022
– volume: 30
  start-page: 2456
  year: 2015
  publication-title: IEEE Trans Power Electron
– volume: 427
  start-page: 53
  year: 2004
  publication-title: Nature
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 187
  year: 2019
  publication-title: Nat. Electron.
– volume: 26
  start-page: 9226
  year: 2015
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 35
  start-page: 599
  year: 2014
  publication-title: IEEE Electron Device Lett.
– volume: 10
  start-page: 534
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 120
  year: 2016
  publication-title: Small
– volume: 573
  start-page: 507
  year: 2019
  publication-title: Nature
– volume: 4
  start-page: 786
  year: 2021
  publication-title: Nat. Electron.
– volume: 357
  start-page: 170
  year: 1996
  publication-title: Surf. Sci.
– volume: 8
  start-page: 8289
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 241
  year: 2022
  publication-title: Nat. Electron.
– volume: 4
  start-page: 2695
  year: 2010
  publication-title: ACS Nano
– volume: 5
  start-page: 849
  year: 2022
  publication-title: Nat. Electron.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 5
  start-page: 5678
  year: 2014
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 5031
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 100
  year: 2013
  publication-title: Nano Lett.
– volume: 3
  start-page: 207
  year: 2020
  publication-title: Nat. Electron.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 563
  year: 1988
  publication-title: Surf. Interface Anal.
– volume: 81
  start-page: 2253
  year: 2001
  publication-title: J. Appl. Polym. Sci.
– volume: 4
  start-page: 495
  year: 2021
  publication-title: Nat. Electron.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 581
  start-page: 406
  year: 2020
  publication-title: Nature
– volume: 11
  start-page: 5689
  year: 2020
  publication-title: Nat. Commun.
– year: 2017
– volume: 11
  start-page: 2453
  year: 2020
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1588
  year: 2017
  publication-title: ACS Nano
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0009606
Score 2.5484285
Snippet Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect‐free...
Nanoscale electronic devices that can work in harsh environments are in high demand for wearable, automotive, and aerospace electronics. Clean and defect-free...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2210735
SubjectTerms Avionics
Buffer layers
Carrier mobility
Current carriers
Defects
Diffusion layers
Electrodes
Electronic devices
field‐effect transistors
Graphene
harsh‐environment resistance
interface engineering
Molybdenum disulfide
Nanotechnology devices
Oxidation
Semiconductor devices
Transistors
van der Waals electrodes
Title All‐Transfer Electrode Interface Engineering Toward Harsh‐Environment‐Resistant MoS2 Field‐Effect Transistors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202210735
https://www.proquest.com/docview/2809010217
https://www.proquest.com/docview/2767172343
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EYWCjMQaSGzHsccKWlVIZSitxBbZzllIoBT1sTDxE_iN_BJsp00DI4xWfLKj873su-8QuuIxSGOKJBKFcgFKEnsMSMMjbTw0CMmkKfx9x-CB98fs_il9alTxV_gQ9YWbl4ygr72AKz27WYOGqiLgBhEXs2TUV5knNA3vtMM1fpR3zwPYHk3dFphYoTbG5OYn-Q__sumlBjPT20VqtcEqu-TlejHX1-b9F3bjf_5gD-0sfVDcqQ7NPtqA8gBtN5AJD9Gi8_r69fEZLJmFKe5W3XIKwOEK0SoDuEGARyH7FvddmPzs6Lrr8jk3GsLMe6nlHA8mjwT3fNKcnxRSSXBYI4CVzI7QuNcd3fajZYeG6M0Z9jSyqVMXsU5InIEP9ITUSmrDJCmM4MwKaRQHKqywCRdWak6tYgAZlQJAMXqMNstJCScIO8VgKLXS6sLFnJZrQ4CBTK1bRxpgLdRecShfitksJyKWoTl51kKX9WcnIP7VQ5UwWbg5GXchK6GMthAJ7MjfKiCPvIJsJrlnRF4zIu_cDTr16PQvRGdoy7elrxIj22hzPl3AuXNe5voiHNBvqefsgA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOZQegBaqBgq4EtdNNrbXax8jmihA00NJJW6rtXcsJKpNlMelp_6E_sb-knq8eZUjHK31yF6N5-nxNwBfVIrGuaqb6KoMAUo3JQxIpxLrCBqE58ZVlO8YXarhtfz-K1tXE9JbmAYfYpNwI8mI-poEnBLSnS1qaFlF4CAegpZcZM_hBV3SkWyeX20RpMhBj3B7IgubkHqN25jyzlP6Jx7mrp8aDc3gNdj1Fpv6kj_t5cK23e1f6I3_9Q9v4NXKDWW95twcwjOsj-BgB5zwLSx7NzcPd_fRmHmcsX7TMKdCFrOIvnTIdgjYOBbgsmGIlH8Huv72BV0YXeGcHNV6wUaTn5wNqG6OJsVqEhbXiHgl83dwPeiPvw6TVZOGZBpse5b4LGiM1HZ5miPFetrY0lgnDa-cVtJr40qFQnvtu0p7Y5XwpUTMhdGIpRTHsFdPajwBFnSDE8Ibb6sQdnplHUeJJvNhHeNQtuB0zaJiJWnzguvUxP7keQvONp-DjNDFR1njZBnm5CpErVxI0QIe-VFMGyyPokFt5gUxotgwouidj3qb0ft_IfoM-8Px6KK4-Hb54wO8pC71TZ3kKewtZkv8GHyZhf0UT-sjbAPwnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxEB21VKrKAUpbRPgortTrwsb2eu1jRBKFlkSIgsRtZXvHQgJtIpJcOPET-I38EmxvvuBYjqv1yF6Nx37PO34D8FukqKwtm4kstScozTRoQFqRGBukQWiubBnOO_oD0bvif66z65Vb_LU-xOLALURGXK9DgI9Kd7wUDdVl1A2inrPkLPsIn7jwFCvAooulgFTA51Ftj2V-DFzOZRtTevza_hXAXIWpcZ_pboKej7BOL7k9mk7MkX14I974nk_4ChszEEpa9azZgg9YfYP1FWnC7zBt3d09Pz7FrczhPenU5XJKJPEM0WmLZMWAXMb0W9LzPPnG23WW9-f80wWOA0ytJqQ__EdJN2TNhUYxl4TEPqJayfgHXHU7lye9ZFaiIRn5nT1LXObXi9Q0aZpjYHpSGa2M5YqWVgrupLJaIJNOuqaQThnBnOaIOVMSUXO2DWvVsMIdIH5lsIw55UzpSacTxlLkqDLn-1EWeQP25x4qZnE2LqhMVaxOnjfg1-K1j5Dw20NXOJz6NrnwnJUyzhpAozuKUa3kUdSazbQIjigWjiha7X5r8bT7P0aH8Pm83S3OTgd_9-BLKFFfJ0nuw9rkfooHHshMzM84V18Ask_vSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-Transfer+Electrode+Interface+Engineering+Toward+Harsh-Environment-Resistant+MoS2+Field-Effect+Transistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wu%2C+Yonghuang&rft.au=Xin%2C+Zeqin&rft.au=Zhang%2C+Zhibin&rft.au=Wang%2C+Bolun&rft.date=2023-05-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=35&rft.issue=18&rft.spage=e2210735&rft_id=info:doi/10.1002%2Fadma.202210735&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon