ORACLE: An analytical approach for T1, T2, proton density, and off‐resonance mapping with phase‐cycled balanced steady‐state free precession

Purpose To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 4; pp. 1657 - 1673
Main Authors Plähn, Nils M. J., Safarkhanlo, Yasaman, Açikgöz, Berk C., Mackowiak, Adèle L. C., Radojewski, Piotr, Bonanno, Gabriele, Peper, Eva S., Heule, Rahel, Bastiaansen, Jessica A. M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30388

Cover

Abstract Purpose To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles. Theory and Methods Off‐resonant‐encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and Δf$$ \Delta f $$. An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, T1$$ {T}_1 $$/T2$$ {T}_2 $$, and Δf$$ \Delta f $$ based on fully sampled (N=20$$ N=20 $$) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N=4$$ N=4 $$) bSSFP profiles in numerical simulations and human brains. Results ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T1$$ {T}_1 $$ and T2$$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white‐matter values of 642 and 51 ms using ORACLE. The Δf$$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T1$$ {T}_1 $$ maps had comparable histograms. The Λ$$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing‐related quantification errors in undersampled bSSFP profiles, significantly reducing scan time. Conclusion ORACLE enables simplified and rapid quantification of T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, and Δf$$ \Delta f $$ from phase‐cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.
AbstractList Purpose To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles. Theory and Methods Off‐resonant‐encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and Δf$$ \Delta f $$. An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, T1$$ {T}_1 $$/T2$$ {T}_2 $$, and Δf$$ \Delta f $$ based on fully sampled (N=20$$ N=20 $$) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N=4$$ N=4 $$) bSSFP profiles in numerical simulations and human brains. Results ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T1$$ {T}_1 $$ and T2$$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white‐matter values of 642 and 51 ms using ORACLE. The Δf$$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T1$$ {T}_1 $$ maps had comparable histograms. The Λ$$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing‐related quantification errors in undersampled bSSFP profiles, significantly reducing scan time. Conclusion ORACLE enables simplified and rapid quantification of T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, and Δf$$ \Delta f $$ from phase‐cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.
To develop and validate a novel analytical approach simplifying T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and off-resonance Δ f $$ \Delta f $$ quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.PURPOSETo develop and validate a novel analytical approach simplifying T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and off-resonance Δ f $$ \Delta f $$ quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and Δ f $$ \Delta f $$ . An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, T 1 $$ {T}_1 $$ / T 2 $$ {T}_2 $$ , and Δ f $$ \Delta f $$ based on fully sampled ( N = 20 $$ N=20 $$ ) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled ( N = 4 $$ N=4 $$ ) bSSFP profiles in numerical simulations and human brains.THEORY AND METHODSOff-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and Δ f $$ \Delta f $$ . An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, T 1 $$ {T}_1 $$ / T 2 $$ {T}_2 $$ , and Δ f $$ \Delta f $$ based on fully sampled ( N = 20 $$ N=20 $$ ) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled ( N = 4 $$ N=4 $$ ) bSSFP profiles in numerical simulations and human brains.ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white-matter values of 642 and 51 ms using ORACLE. The Δ f $$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T 1 $$ {T}_1 $$ maps had comparable histograms. The Λ $$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing-related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.RESULTSORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white-matter values of 642 and 51 ms using ORACLE. The Δ f $$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T 1 $$ {T}_1 $$ maps had comparable histograms. The Λ $$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing-related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.ORACLE enables simplified and rapid quantification of T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, and Δ f $$ \Delta f $$ from phase-cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.CONCLUSIONORACLE enables simplified and rapid quantification of T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, and Δ f $$ \Delta f $$ from phase-cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.
PurposeTo develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.Theory and MethodsOff‐resonant‐encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and Δf$$ \Delta f $$. An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, T1$$ {T}_1 $$/T2$$ {T}_2 $$, and Δf$$ \Delta f $$ based on fully sampled (N=20$$ N=20 $$) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N=4$$ N=4 $$) bSSFP profiles in numerical simulations and human brains.ResultsORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T1$$ {T}_1 $$ and T2$$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white‐matter values of 642 and 51 ms using ORACLE. The Δf$$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T1$$ {T}_1 $$ maps had comparable histograms. The Λ$$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing‐related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.ConclusionORACLE enables simplified and rapid quantification of T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, and Δf$$ \Delta f $$ from phase‐cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.
Author Mackowiak, Adèle L. C.
Bonanno, Gabriele
Safarkhanlo, Yasaman
Peper, Eva S.
Açikgöz, Berk C.
Radojewski, Piotr
Bastiaansen, Jessica A. M.
Plähn, Nils M. J.
Heule, Rahel
Author_xml – sequence: 1
  givenname: Nils M. J.
  orcidid: 0009-0002-2624-5412
  surname: Plähn
  fullname: Plähn, Nils M. J.
  organization: University of Bern
– sequence: 2
  givenname: Yasaman
  orcidid: 0000-0001-9573-870X
  surname: Safarkhanlo
  fullname: Safarkhanlo, Yasaman
  organization: University Hospital Bern
– sequence: 3
  givenname: Berk C.
  surname: Açikgöz
  fullname: Açikgöz, Berk C.
  organization: University of Bern
– sequence: 4
  givenname: Adèle L. C.
  surname: Mackowiak
  fullname: Mackowiak, Adèle L. C.
  organization: Lausanne University Hospital and University of Lausanne
– sequence: 5
  givenname: Piotr
  surname: Radojewski
  fullname: Radojewski, Piotr
  organization: University Institute of Diagnostic and Interventional Neuroradiology
– sequence: 6
  givenname: Gabriele
  surname: Bonanno
  fullname: Bonanno, Gabriele
  organization: Siemens Healthineers International AG
– sequence: 7
  givenname: Eva S.
  surname: Peper
  fullname: Peper, Eva S.
  organization: Swiss Institute for Translational and Entrepreneurial Medicine
– sequence: 8
  givenname: Rahel
  surname: Heule
  fullname: Heule, Rahel
  organization: Max Planck Institute for Biological Cybernetics
– sequence: 9
  givenname: Jessica A. M.
  orcidid: 0000-0002-5485-1308
  surname: Bastiaansen
  fullname: Bastiaansen, Jessica A. M.
  email: jbastiaansen.mri@gmail.com
  organization: Swiss Institute for Translational and Entrepreneurial Medicine
BookMark eNpdkcFq3DAQhkVJoZu0h76BoJce1snIkmWpt2VJ0sKGQNiejVYadR1sybW8BN_yCKGP2CeJNskppxnm_2aYmf-UnIQYkJCvDM4ZQHnRj_05B67UB7JgVVkWZaXFCVlALaDgTItP5DSlewDQuhYL8u_2brXeXP6gq0BNMN08tdZ01AzDGI3dUx9HumVLui2XNJemGKjDkNppXmbe0ej9_8enEVMMJlikfe5swx_60E57OuxNwizb2Xbo6M50R8bRNKFxcxbSZCakfkTMw9FiSm0Mn8lHb7qEX97iGfl9dbld_yw2t9e_1qtNMZSVVAXndWUBlMC6lgakcsJybfnOyJ023EvtnAXHmbM7oZiomOaA0peKOe8Z8DPy_XVuvuvvAdPU9G2y2OUlMR5Sw5lQQkuueUa_vUPv42HM7zpSkklQHMpMXbxSD22HczOMbW_GuWHQHK1psjXNizXNzd3NS8KfARjyh_g
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID 8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30388
DatabaseName Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Biochemistry Abstracts 1
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1673
ExternalDocumentID MRM30388
Genre researchArticle
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: PCEFP2_194296
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
8FD
AAMMB
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-p2568-3375c0084e776a068d4c39c3ba6b9a3f69ddc0d31dcb481451930e6f281dff103
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Sep 05 08:55:09 EDT 2025
Fri Jul 25 12:18:39 EDT 2025
Fri Jan 31 10:08:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-p2568-3375c0084e776a068d4c39c3ba6b9a3f69ddc0d31dcb481451930e6f281dff103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9573-870X
0000-0002-5485-1308
0009-0002-2624-5412
PQID 3161608302
PQPubID 1016391
PageCount 17
ParticipantIDs proquest_miscellaneous_3148496393
proquest_journals_3161608302
wiley_primary_10_1002_mrm_30388_MRM30388
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1990; 16
2015; 73
1989; 81
2015; 74
2016; 76
2024
1992; 16
2000; 178
2016; 37
2010; 63
2010; 64
2017; 77
2017; 35
2017; 78
2022; 35
2003; 49
1998; 121
2021; 85
1946
2018; 79
1948; 73
1966; 37
2020; 41
2020; 84
2006; 55
1995; 13
1995; 12
1988; 169
2022; 41
2003
2020; 33
2022; 87
2012; 36
1986; 327
2019; 82
2010; 49
2019; 81
2004; 51
2017; 46A
2023; 89
2021; 299
2022
1988; 6
2024; 91
2024; 92
2018
2005; 53
2023; 90
2018; 10
2014; 71
References_xml – volume: 51
  start-page: 1038
  year: 2004
  end-page: 1047
  article-title: Analysis of multiple‐acquisition SSFP
  publication-title: Magn Reson Med.
– volume: 84
  start-page: 2815
  year: 2020
  end-page: 2830
  article-title: Fast T mapping using multi‐echo spin‐echo MRI: a linear order approach
  publication-title: Magn Reson Med.
– volume: 10
  start-page: 30
  year: 2018
  end-page: 45
  article-title: Susceptibility weighted imaging: clinical applications and future directions
  publication-title: World J Radiol.
– volume: 71
  start-page: 230
  year: 2014
  end-page: 237
  article-title: Triple echo steady‐state (TESS) relaxometry
  publication-title: Magn Reson Med.
– volume: 13
  start-page: 379
  year: 1995
  end-page: 385
  article-title: Spin‐lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd‐DTPA on relaxation parameters
  publication-title: Magn Reson Imaging.
– volume: 36
  start-page: 805
  year: 2012
  end-page: 824
  article-title: Practical medical applications of quantitative MR relaxometry
  publication-title: Magn Reson Imaging.
– year: 2024
– volume: 81
  start-page: 474
  year: 1989
  end-page: 483
  article-title: The steady‐state signals in short‐repetition‐time sequences
  publication-title: J Magn Reson (1969).
– volume: 16
  start-page: 444
  year: 1990
  end-page: 459
  article-title: Motion‐insensitive, steady‐state free precession imaging
  publication-title: Magn Reson Med.
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med.
– volume: 16
  start-page: 506
  year: 1992
  end-page: 513
  article-title: High signal regions in normal white matter shown by heavily T2‐weighted CSF nulled IR sequences
  publication-title: J Comput Assist Tomogr.
– year: 1946
– volume: 63
  start-page: 385
  year: 2010
  end-page: 395
  article-title: Asymmetries of the balanced SSFP profile. Part I: theory and observation
  publication-title: Magn Reson Med.
– volume: 84
  start-page: 2981
  year: 2020
  end-page: 2993
  article-title: Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data
  publication-title: Magn Reson Med
– volume: 6
  start-page: 175
  year: 1988
  end-page: 193
  article-title: An analysis of fast imaging sequences with steady‐state transverse magnetization refocusing
  publication-title: Magn Reson Med.
– volume: 178
  start-page: 81
  year: 2000
  end-page: 87
  article-title: Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis
  publication-title: J Neurol Sci.
– volume: 35
  year: 2022
  article-title: High‐resolution neural network‐driven mapping of multiple diffusion metrics leveraging asymmetries in the balanced steady‐state free precession frequency profile
  publication-title: NMR Biomed.
– volume: 35
  start-page: 69
  year: 2017
  end-page: 80
  article-title: What are normal relaxation times of tissues at 3T?
  publication-title: Magn Reson Imaging.
– volume: 16
  start-page: 841
  year: 1992
  end-page: 844
  article-title: Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain
  publication-title: J Comput Assist Tomogr.
– volume: 49
  start-page: 771
  year: 2003
  end-page: 775
  article-title: An analytical solution for the SSFP signal in MRI
  publication-title: Magn Reson Med.
– volume: 91
  start-page: 2257
  year: 2024
  end-page: 2265
  article-title: Robust T2 estimation with balanced steady state free precession
  publication-title: Magn Reson Med.
– volume: 82
  start-page: 1725
  year: 2019
  end-page: 1740
  article-title: Investigation of the influence of B drift on the performance of the PLANET method and an algorithm for drift correction
  publication-title: Magn Reson Med.
– volume: 37
  start-page: 93
  year: 1966
  end-page: 102
  article-title: Application of fourier transform spectroscopy to magnetic resonance
  publication-title: Rev Sci Instrum.
– volume: 78
  start-page: 518
  year: 2017
  end-page: 526
  article-title: Motion‐insensitive rapid configuration relaxometry
  publication-title: Magn Reson Med.
– volume: 327
  start-page: 307
  year: 1986
  end-page: 310
  article-title: Statistical methods for assessing agreement between two methods of CLINICAL measurement
  publication-title: Lancet.
– volume: 49
  start-page: 1271
  year: 2010
  end-page: 1281
  article-title: MP2RAGE, a self bias‐field corrected sequence for improved segmentation and T1‐mapping at high field
  publication-title: Neuroimage.
– year: 2022
– volume: 12
  start-page: 286
  year: 1995
  end-page: 290
  article-title: MRI in neurofibromatosis type I: using fluid‐attenuated inversion recovery pulse sequences
  publication-title: Pediatr Neurol.
– volume: 169
  start-page: 779
  year: 1988
  end-page: 785
  article-title: Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors
  publication-title: Radiology.
– volume: 77
  start-page: 644
  year: 2017
  end-page: 654
  article-title: Combined geometric and algebraic solutions for removal of bSSFP banding artifacts with performance comparisons
  publication-title: Magn Reson Med.
– volume: 85
  start-page: 1855
  year: 2021
  end-page: 1864
  article-title: Configuration‐based electrical properties tomography
  publication-title: Magn Reson Med.
– volume: 33
  year: 2020
  article-title: Structure or exchange? On the feasibility of chemical exchange detection with balanced steady‐state free precession in tissue—an in vitro study
  publication-title: NMR Biomed.
– volume: 73
  start-page: 82
  year: 2015
  end-page: 101
  article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker
  publication-title: Magn Reson Med.
– volume: 63
  start-page: 396
  year: 2010
  end-page: 406
  article-title: Asymmetries of the balanced SSFP profile. Part II: white matter
  publication-title: Magn Reson Med.
– volume: 79
  start-page: 711
  year: 2018
  end-page: 722
  article-title: PLANET: an ellipse fitting approach for simultaneous T1 and T2 mapping using phase‐cycled balanced steady‐state free precession
  publication-title: Magn Reson Med.
– volume: 41
  start-page: 14
  year: 2022
  end-page: 26
  article-title: Constrained ellipse fitting for efficient parameter mapping with phase‐cycled bSSFP MRI
  publication-title: IEEE Trans Med Imaging.
– year: 2003
– volume: 121
  start-page: 3
  year: 1998
  end-page: 24
  article-title: The role of magnetic resonance techniques in understanding and managing multiple sclerosis
  publication-title: Brain.
– volume: 37
  start-page: 180
  year: 2016
  end-page: 184
  article-title: Proton density MRI increases detection of cervical spinal cord multiple sclerosis lesions compared with T2‐weighted fast spin‐echo
  publication-title: AJNR Am J Neuroradiol.
– start-page: 1
  year: 2018
  end-page: 23
– volume: 299
  start-page: 3
  year: 2021
  end-page: 26
  article-title: Susceptibility‐weighted imaging: technical essentials and clinical neurologic applications
  publication-title: Radiology.
– volume: 55
  start-page: 98
  year: 2006
  end-page: 107
  article-title: Steady state of gradient echo sequences with radiofrequency phase cycling: analytical solution, contrast enhancement with partial spoiling
  publication-title: Magn Reson Med.
– volume: 92
  start-page: 215
  year: 2024
  end-page: 225
  article-title: Getting the phase consistent: the importance of phase description in balanced steady‐state free precession MRI of multi‐compartment systems
  publication-title: Magn Reson Med.
– volume: 46A
  year: 2017
  article-title: Steady‐state free precession signals of arbitrary dephasing order and their sensitivity to T2*
  publication-title: Concepts Magn Reson.
– volume: 73
  start-page: 679
  year: 1948
  end-page: 712
  article-title: Relaxation effects in nuclear magnetic resonance absorption
  publication-title: Phys Rev.
– volume: 71
  start-page: 927
  year: 2014
  end-page: 933
  article-title: Banding artifact removal for bSSFP imaging with an elliptical signal model: banding artifact removal for bSSFP imaging
  publication-title: Magn Reson Med.
– volume: 81
  start-page: 1534
  year: 2019
  end-page: 1552
  article-title: On the accuracy and precision of PLANET for multiparametric MRI using phase‐cycled bSSFP imaging
  publication-title: Magn Reson Med.
– volume: 89
  start-page: 2264
  year: 2023
  end-page: 2269
  article-title: Approximate B1+ scaling of the SSFP steady state
  publication-title: Magn Reson Med.
– volume: 33
  year: 2020
  article-title: Optimal echo times for multi‐gradient echo‐based B field‐mapping
  publication-title: NMR Biomed.
– volume: 90
  start-page: 2348
  year: 2023
  end-page: 2361
  article-title: SPARCQ: a new approach for fat fraction mapping using asymmetries in the phase‐cycled balanced SSFP signal profile
  publication-title: Magn Reson Med.
– volume: 87
  start-page: 1886
  year: 2022
  end-page: 1893
  article-title: Pure balanced steady‐state free precession imaging (pure bSSFP)
  publication-title: Magn Reson Med.
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts
  publication-title: Magn Reson Med.
– volume: 74
  start-page: 1327
  year: 2015
  end-page: 1335
  article-title: How does magnetization transfer influence mc DESPOT results?
  publication-title: Magn Reson Med.
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolutionT1 andT2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med.
– volume: 41
  start-page: 4804
  year: 2020
  end-page: 4814
  article-title: Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex Parcellation
  publication-title: Hum Brain Mapp.
SSID ssj0009974
Score 2.480345
Snippet Purpose To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$...
PurposeTo develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$...
To develop and validate a novel analytical approach simplifying T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and off-resonance Δ f $$ \Delta f $$...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 1657
SubjectTerms Aliasing
aliasing correction
analytical solutions
Biomarkers
brain
Cerebrospinal fluid
Error reduction
Exact solutions
Mathematical analysis
phase‐cycled bSSFP
Precession
Proton density (concentration)
quantitative MRI
Resonance
Simulation
Title ORACLE: An analytical approach for T1, T2, proton density, and off‐resonance mapping with phase‐cycled balanced steady‐state free precession
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30388
https://www.proquest.com/docview/3161608302
https://www.proquest.com/docview/3148496393
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LaxsxEMdFCKT00qZpS92mRYUeevA6a0mrXTUnkyaEUjdgHMihsOjZQvGu8ePgnvoRQj5iP0lmtF7ncQq5CaRdBKMZ_SWNfiLkk-WZy3LNkzwzIhEZlECFi0TrggcF6wlv8Tby8Ic8PRffLrKLLXLY3oVp-BCbDTf0jBiv0cG1mR_cQEMns0mPI8sE4m-fS-Tmfx3doKOUagjMucA4o0RLFUrZwebLO6rytjaNk8vJc_Kz7VaTU_Knt1yYnv17j9j4yH7vkmdr0UkHzSh5QbZ8tUeeDNfH6ntkJ-aB2vlLcnU2Ghx9P_5CBxXVyCuJW920JY9TkLh03O_SMetSRDzUFXWYAr9YdaG9o3UI__9dwhK-RpCHpxON_IdfFLd76fQ3TJlQbVfQC0cNZlVaKMSBtoKKeLuJhpn38HNvG2TIK3J-cjw-Ok3WzzYkU9BPRcJ5nlnk9Ps8lzqVhROWK8uNlkZpHqRyzqaO9501osCXghVPvQwMpHMI_ZS_JttVXfk3hAYrLTNcay-UQDQikxozSDlLs8B81iH7rQHLte_NSw4iVqbINeuQj5tq8Bo8CtGVr5fYRhQCYo_iHfI5WqucNnSPsuE4sxLsVEY7lcPRMBbePrzpO_KU4UPBMcVnn2wvZkv_HtTLwnyIw_QaqQHuGQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Bb9MwFMefxhCMC4OxicIGRuLAoenS2HHiaZdq2lSgGVLVSbugyHFskFCTqmsP5cRHQHxEPgnvOU0HnBA3S3YiS8_P_vv5-WeA14bHZZxoHiRxIQIRYwlVuAi0TrlTuJ-whm4jZ5dyeCXeXcfXW3Da3oVp-BCbgBt5hp-vycEpIH18Sw2dzqc9TjCTO3DXn8-RJBrfwqOUahjMiaCZRomWKxRGx5tP_9CVv6tTv7xc7MLHtmNNVsmX3nJR9MzXv5iN_9vzR_BwrTvZoBkoj2HLVntwP1ufrO_BPZ8Kam6ewI8P48HZ6PyEDSqmCVnio92shY8zVLls0u-ySdRlRHmoK1ZSFvxi1cX2Jaud-_ntO-7ia2J5WDbVhID4xCjiy2afcdXEarPCXpSsoMRKgwU_1lZY4S84MTe3Fn9uTUMN2Yeri_PJ2TBYv9wQzFBCpQHnSWwI1W-TROpQpqUwXBleaFkozZ1UZWnCkvdLU4iUHgtWPLTSRaieneuH_AC2q7qyT4E5I01UcK2tUILoiJHUlETKozB2kY07cNhaMF-7303OUcfKkNBmHXi1qUbHodMQXdl6SW1EKnD6UbwDb7y58lkD-MgblHOUo51yb6c8G2e-8Ozfm76EneEkG-Wjt5fvn8ODiN4N9hk_h7C9mC_tEYqZRfHCj9lfh5jyNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbhMxEMdHpYiqFz4KFYECRuLAIZtu1l7vGk5RaVSgKShKpR6QVl5_UAllN0qTQzjxCIhH5EmY8WZT4IS4WbJ3ZWlm7L_t8c8ALwxPbZppHmVpKSKRYglVuIi0zrlXuJ5whm4jj87kybl4d5FebMHr9i5Mw4fYbLhRZITxmgJ8Zv3hNTR0Op_2OLFMbsBNIXGaJEU0vmZHKdUgmDNBA40SLVYoTg43n_4hK38Xp2F2Gd6BT22_mqSSL73louyZr38hG_-z43fh9lp1skHjJvdgy1V7sDNan6vvwa2QCGqu7sOPD-PB0enxKzaomCZgSdjrZi16nKHGZZN-l02SLiPGQ10xSznwi1UX21tWe__z23dcw9dE8nBsqgkA8ZnRfi-bXeKcidVmhb2wrKS0SoOF4GkrrAjXm5ifO4c_d6ZhhjyA8-Hx5OgkWr_bEM1QQOUR51lqCNTvskzqWOZWGK4ML7UsleZeKmtNbHnfmlLk9FSw4rGTPkHt7H0_5vuwXdWVewjMG2mSkmvthBLERkykphRSnsSpT1zagYPWgMU6-K4KjipWxgQ268DzTTWGDZ2F6MrVS2ojcoGDj-IdeBmsVcwavEfRgJyTAu1UBDsVo_EoFB79e9NnsPPxzbA4fXv2_jHsJvRocEj3OYDtxXzpnqCSWZRPg8f-Asi_8OY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORACLE%3A+An+analytical+approach+for+T1%2C+T2%2C+proton+density%2C+and+off%E2%80%90resonance+mapping+with+phase%E2%80%90cycled+balanced+steady%E2%80%90state+free+precession&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pl%C3%A4hn%2C+Nils+M+J&rft.au=Safarkhanlo%2C+Yasaman&rft.au=A%C3%A7ikg%C3%B6z%2C+Berk+C&rft.au=Mackowiak%2C+Ad%C3%A8le+L+C&rft.date=2025-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=4&rft.spage=1657&rft.epage=1673&rft_id=info:doi/10.1002%2Fmrm.30388&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon