ORACLE: An analytical approach for T1, T2, proton density, and off‐resonance mapping with phase‐cycled balanced steady‐state free precession
Purpose To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing...
Saved in:
Published in | Magnetic resonance in medicine Vol. 93; no. 4; pp. 1657 - 1673 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.30388 |
Cover
Abstract | Purpose
To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.
Theory and Methods
Off‐resonant‐encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and Δf$$ \Delta f $$. An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, T1$$ {T}_1 $$/T2$$ {T}_2 $$, and Δf$$ \Delta f $$ based on fully sampled (N=20$$ N=20 $$) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N=4$$ N=4 $$) bSSFP profiles in numerical simulations and human brains.
Results
ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T1$$ {T}_1 $$ and T2$$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white‐matter values of 642 and 51 ms using ORACLE. The Δf$$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T1$$ {T}_1 $$ maps had comparable histograms. The Λ$$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing‐related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.
Conclusion
ORACLE enables simplified and rapid quantification of T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, and Δf$$ \Delta f $$ from phase‐cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues. |
---|---|
AbstractList | Purpose
To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.
Theory and Methods
Off‐resonant‐encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and Δf$$ \Delta f $$. An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, T1$$ {T}_1 $$/T2$$ {T}_2 $$, and Δf$$ \Delta f $$ based on fully sampled (N=20$$ N=20 $$) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N=4$$ N=4 $$) bSSFP profiles in numerical simulations and human brains.
Results
ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T1$$ {T}_1 $$ and T2$$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white‐matter values of 642 and 51 ms using ORACLE. The Δf$$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T1$$ {T}_1 $$ maps had comparable histograms. The Λ$$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing‐related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.
Conclusion
ORACLE enables simplified and rapid quantification of T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, and Δf$$ \Delta f $$ from phase‐cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues. To develop and validate a novel analytical approach simplifying T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and off-resonance Δ f $$ \Delta f $$ quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.PURPOSETo develop and validate a novel analytical approach simplifying T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and off-resonance Δ f $$ \Delta f $$ quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and Δ f $$ \Delta f $$ . An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, T 1 $$ {T}_1 $$ / T 2 $$ {T}_2 $$ , and Δ f $$ \Delta f $$ based on fully sampled ( N = 20 $$ N=20 $$ ) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled ( N = 4 $$ N=4 $$ ) bSSFP profiles in numerical simulations and human brains.THEORY AND METHODSOff-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and Δ f $$ \Delta f $$ . An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, T 1 $$ {T}_1 $$ / T 2 $$ {T}_2 $$ , and Δ f $$ \Delta f $$ based on fully sampled ( N = 20 $$ N=20 $$ ) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled ( N = 4 $$ N=4 $$ ) bSSFP profiles in numerical simulations and human brains.ORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white-matter values of 642 and 51 ms using ORACLE. The Δ f $$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T 1 $$ {T}_1 $$ maps had comparable histograms. The Λ $$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing-related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.RESULTSORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T 1 $$ {T}_1 $$ and T 2 $$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white-matter values of 642 and 51 ms using ORACLE. The Δ f $$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T 1 $$ {T}_1 $$ maps had comparable histograms. The Λ $$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing-related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.ORACLE enables simplified and rapid quantification of T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, and Δ f $$ \Delta f $$ from phase-cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues.CONCLUSIONORACLE enables simplified and rapid quantification of T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , PD, and Δ f $$ \Delta f $$ from phase-cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues. PurposeTo develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$ quantifications from phase‐cycled balanced steady‐state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.Theory and MethodsOff‐resonant‐encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles. which instantaneously quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and Δf$$ \Delta f $$. An aliasing correction formalism was derived to allow undersampling of bSSFP profiles. ORACLE was used to quantify T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, T1$$ {T}_1 $$/T2$$ {T}_2 $$, and Δf$$ \Delta f $$ based on fully sampled (N=20$$ N=20 $$) bSSFP profiles from numerical simulations and 3T MRI experiments in phantom and 10 healthy subjects' brains. Obtained values were compared with reference scans in the same scan session. Aliasing correction was validated in subsampled (N=4$$ N=4 $$) bSSFP profiles in numerical simulations and human brains.ResultsORACLE quantifications agreed well with input values from simulations and phantom reference values (R2 = 0.99). In human brains, T1$$ {T}_1 $$ and T2$$ {T}_2 $$ quantifications when compared with reference methods showed coefficients of variation below 2.9% and 3.9%, biases of 182 and 16.6 ms, and mean white‐matter values of 642 and 51 ms using ORACLE. The Δf$$ \Delta f $$ quantification differed less than 3 Hz between both methods. PD and T1$$ {T}_1 $$ maps had comparable histograms. The Λ$$ \varLambda $$ maps effectively identified cerebrospinal fluid. Aliasing correction removed aliasing‐related quantification errors in undersampled bSSFP profiles, significantly reducing scan time.ConclusionORACLE enables simplified and rapid quantification of T1$$ {T}_1 $$, T2$$ {T}_2 $$, PD, and Δf$$ \Delta f $$ from phase‐cycled bSSFP profiles, reducing acquisition time and eliminating biomarker maps' coregistration issues. |
Author | Mackowiak, Adèle L. C. Bonanno, Gabriele Safarkhanlo, Yasaman Peper, Eva S. Açikgöz, Berk C. Radojewski, Piotr Bastiaansen, Jessica A. M. Plähn, Nils M. J. Heule, Rahel |
Author_xml | – sequence: 1 givenname: Nils M. J. orcidid: 0009-0002-2624-5412 surname: Plähn fullname: Plähn, Nils M. J. organization: University of Bern – sequence: 2 givenname: Yasaman orcidid: 0000-0001-9573-870X surname: Safarkhanlo fullname: Safarkhanlo, Yasaman organization: University Hospital Bern – sequence: 3 givenname: Berk C. surname: Açikgöz fullname: Açikgöz, Berk C. organization: University of Bern – sequence: 4 givenname: Adèle L. C. surname: Mackowiak fullname: Mackowiak, Adèle L. C. organization: Lausanne University Hospital and University of Lausanne – sequence: 5 givenname: Piotr surname: Radojewski fullname: Radojewski, Piotr organization: University Institute of Diagnostic and Interventional Neuroradiology – sequence: 6 givenname: Gabriele surname: Bonanno fullname: Bonanno, Gabriele organization: Siemens Healthineers International AG – sequence: 7 givenname: Eva S. surname: Peper fullname: Peper, Eva S. organization: Swiss Institute for Translational and Entrepreneurial Medicine – sequence: 8 givenname: Rahel surname: Heule fullname: Heule, Rahel organization: Max Planck Institute for Biological Cybernetics – sequence: 9 givenname: Jessica A. M. orcidid: 0000-0002-5485-1308 surname: Bastiaansen fullname: Bastiaansen, Jessica A. M. email: jbastiaansen.mri@gmail.com organization: Swiss Institute for Translational and Entrepreneurial Medicine |
BookMark | eNpdkcFq3DAQhkVJoZu0h76BoJce1snIkmWpt2VJ0sKGQNiejVYadR1sybW8BN_yCKGP2CeJNskppxnm_2aYmf-UnIQYkJCvDM4ZQHnRj_05B67UB7JgVVkWZaXFCVlALaDgTItP5DSlewDQuhYL8u_2brXeXP6gq0BNMN08tdZ01AzDGI3dUx9HumVLui2XNJemGKjDkNppXmbe0ej9_8enEVMMJlikfe5swx_60E57OuxNwizb2Xbo6M50R8bRNKFxcxbSZCakfkTMw9FiSm0Mn8lHb7qEX97iGfl9dbld_yw2t9e_1qtNMZSVVAXndWUBlMC6lgakcsJybfnOyJ023EvtnAXHmbM7oZiomOaA0peKOe8Z8DPy_XVuvuvvAdPU9G2y2OUlMR5Sw5lQQkuueUa_vUPv42HM7zpSkklQHMpMXbxSD22HczOMbW_GuWHQHK1psjXNizXNzd3NS8KfARjyh_g |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine. 2025 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. – notice: 2025 International Society for Magnetic Resonance in Medicine. |
DBID | 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.30388 |
DatabaseName | Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1673 |
ExternalDocumentID | MRM30388 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: PCEFP2_194296 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 8FD AAMMB AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-p2568-3375c0084e776a068d4c39c3ba6b9a3f69ddc0d31dcb481451930e6f281dff103 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Sep 05 08:55:09 EDT 2025 Fri Jul 25 12:18:39 EDT 2025 Fri Jan 31 10:08:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p2568-3375c0084e776a068d4c39c3ba6b9a3f69ddc0d31dcb481451930e6f281dff103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9573-870X 0000-0002-5485-1308 0009-0002-2624-5412 |
PQID | 3161608302 |
PQPubID | 1016391 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3148496393 proquest_journals_3161608302 wiley_primary_10_1002_mrm_30388_MRM30388 |
PublicationCentury | 2000 |
PublicationDate | April 2025 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1990; 16 2015; 73 1989; 81 2015; 74 2016; 76 2024 1992; 16 2000; 178 2016; 37 2010; 63 2010; 64 2017; 77 2017; 35 2017; 78 2022; 35 2003; 49 1998; 121 2021; 85 1946 2018; 79 1948; 73 1966; 37 2020; 41 2020; 84 2006; 55 1995; 13 1995; 12 1988; 169 2022; 41 2003 2020; 33 2022; 87 2012; 36 1986; 327 2019; 82 2010; 49 2019; 81 2004; 51 2017; 46A 2023; 89 2021; 299 2022 1988; 6 2024; 91 2024; 92 2018 2005; 53 2023; 90 2018; 10 2014; 71 |
References_xml | – volume: 51 start-page: 1038 year: 2004 end-page: 1047 article-title: Analysis of multiple‐acquisition SSFP publication-title: Magn Reson Med. – volume: 84 start-page: 2815 year: 2020 end-page: 2830 article-title: Fast T mapping using multi‐echo spin‐echo MRI: a linear order approach publication-title: Magn Reson Med. – volume: 10 start-page: 30 year: 2018 end-page: 45 article-title: Susceptibility weighted imaging: clinical applications and future directions publication-title: World J Radiol. – volume: 71 start-page: 230 year: 2014 end-page: 237 article-title: Triple echo steady‐state (TESS) relaxometry publication-title: Magn Reson Med. – volume: 13 start-page: 379 year: 1995 end-page: 385 article-title: Spin‐lattice relaxation and magnetization transfer in intracranial tumors in vivo: effects of Gd‐DTPA on relaxation parameters publication-title: Magn Reson Imaging. – volume: 36 start-page: 805 year: 2012 end-page: 824 article-title: Practical medical applications of quantitative MR relaxometry publication-title: Magn Reson Imaging. – year: 2024 – volume: 81 start-page: 474 year: 1989 end-page: 483 article-title: The steady‐state signals in short‐repetition‐time sequences publication-title: J Magn Reson (1969). – volume: 16 start-page: 444 year: 1990 end-page: 459 article-title: Motion‐insensitive, steady‐state free precession imaging publication-title: Magn Reson Med. – volume: 64 start-page: 439 year: 2010 end-page: 446 article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn Reson Med. – volume: 16 start-page: 506 year: 1992 end-page: 513 article-title: High signal regions in normal white matter shown by heavily T2‐weighted CSF nulled IR sequences publication-title: J Comput Assist Tomogr. – year: 1946 – volume: 63 start-page: 385 year: 2010 end-page: 395 article-title: Asymmetries of the balanced SSFP profile. Part I: theory and observation publication-title: Magn Reson Med. – volume: 84 start-page: 2981 year: 2020 end-page: 2993 article-title: Multi‐parametric artificial neural network fitting of phase‐cycled balanced steady‐state free precession data publication-title: Magn Reson Med – volume: 6 start-page: 175 year: 1988 end-page: 193 article-title: An analysis of fast imaging sequences with steady‐state transverse magnetization refocusing publication-title: Magn Reson Med. – volume: 178 start-page: 81 year: 2000 end-page: 87 article-title: Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis publication-title: J Neurol Sci. – volume: 35 year: 2022 article-title: High‐resolution neural network‐driven mapping of multiple diffusion metrics leveraging asymmetries in the balanced steady‐state free precession frequency profile publication-title: NMR Biomed. – volume: 35 start-page: 69 year: 2017 end-page: 80 article-title: What are normal relaxation times of tissues at 3T? publication-title: Magn Reson Imaging. – volume: 16 start-page: 841 year: 1992 end-page: 844 article-title: Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain publication-title: J Comput Assist Tomogr. – volume: 49 start-page: 771 year: 2003 end-page: 775 article-title: An analytical solution for the SSFP signal in MRI publication-title: Magn Reson Med. – volume: 91 start-page: 2257 year: 2024 end-page: 2265 article-title: Robust T2 estimation with balanced steady state free precession publication-title: Magn Reson Med. – volume: 82 start-page: 1725 year: 2019 end-page: 1740 article-title: Investigation of the influence of B drift on the performance of the PLANET method and an algorithm for drift correction publication-title: Magn Reson Med. – volume: 37 start-page: 93 year: 1966 end-page: 102 article-title: Application of fourier transform spectroscopy to magnetic resonance publication-title: Rev Sci Instrum. – volume: 78 start-page: 518 year: 2017 end-page: 526 article-title: Motion‐insensitive rapid configuration relaxometry publication-title: Magn Reson Med. – volume: 327 start-page: 307 year: 1986 end-page: 310 article-title: Statistical methods for assessing agreement between two methods of CLINICAL measurement publication-title: Lancet. – volume: 49 start-page: 1271 year: 2010 end-page: 1281 article-title: MP2RAGE, a self bias‐field corrected sequence for improved segmentation and T1‐mapping at high field publication-title: Neuroimage. – year: 2022 – volume: 12 start-page: 286 year: 1995 end-page: 290 article-title: MRI in neurofibromatosis type I: using fluid‐attenuated inversion recovery pulse sequences publication-title: Pediatr Neurol. – volume: 169 start-page: 779 year: 1988 end-page: 785 article-title: Tissue characterization with T1, T2, and proton density values: results in 160 patients with brain tumors publication-title: Radiology. – volume: 77 start-page: 644 year: 2017 end-page: 654 article-title: Combined geometric and algebraic solutions for removal of bSSFP banding artifacts with performance comparisons publication-title: Magn Reson Med. – volume: 85 start-page: 1855 year: 2021 end-page: 1864 article-title: Configuration‐based electrical properties tomography publication-title: Magn Reson Med. – volume: 33 year: 2020 article-title: Structure or exchange? On the feasibility of chemical exchange detection with balanced steady‐state free precession in tissue—an in vitro study publication-title: NMR Biomed. – volume: 73 start-page: 82 year: 2015 end-page: 101 article-title: Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker publication-title: Magn Reson Med. – volume: 63 start-page: 396 year: 2010 end-page: 406 article-title: Asymmetries of the balanced SSFP profile. Part II: white matter publication-title: Magn Reson Med. – volume: 79 start-page: 711 year: 2018 end-page: 722 article-title: PLANET: an ellipse fitting approach for simultaneous T1 and T2 mapping using phase‐cycled balanced steady‐state free precession publication-title: Magn Reson Med. – volume: 41 start-page: 14 year: 2022 end-page: 26 article-title: Constrained ellipse fitting for efficient parameter mapping with phase‐cycled bSSFP MRI publication-title: IEEE Trans Med Imaging. – year: 2003 – volume: 121 start-page: 3 year: 1998 end-page: 24 article-title: The role of magnetic resonance techniques in understanding and managing multiple sclerosis publication-title: Brain. – volume: 37 start-page: 180 year: 2016 end-page: 184 article-title: Proton density MRI increases detection of cervical spinal cord multiple sclerosis lesions compared with T2‐weighted fast spin‐echo publication-title: AJNR Am J Neuroradiol. – start-page: 1 year: 2018 end-page: 23 – volume: 299 start-page: 3 year: 2021 end-page: 26 article-title: Susceptibility‐weighted imaging: technical essentials and clinical neurologic applications publication-title: Radiology. – volume: 55 start-page: 98 year: 2006 end-page: 107 article-title: Steady state of gradient echo sequences with radiofrequency phase cycling: analytical solution, contrast enhancement with partial spoiling publication-title: Magn Reson Med. – volume: 92 start-page: 215 year: 2024 end-page: 225 article-title: Getting the phase consistent: the importance of phase description in balanced steady‐state free precession MRI of multi‐compartment systems publication-title: Magn Reson Med. – volume: 46A year: 2017 article-title: Steady‐state free precession signals of arbitrary dephasing order and their sensitivity to T2* publication-title: Concepts Magn Reson. – volume: 73 start-page: 679 year: 1948 end-page: 712 article-title: Relaxation effects in nuclear magnetic resonance absorption publication-title: Phys Rev. – volume: 71 start-page: 927 year: 2014 end-page: 933 article-title: Banding artifact removal for bSSFP imaging with an elliptical signal model: banding artifact removal for bSSFP imaging publication-title: Magn Reson Med. – volume: 81 start-page: 1534 year: 2019 end-page: 1552 article-title: On the accuracy and precision of PLANET for multiparametric MRI using phase‐cycled bSSFP imaging publication-title: Magn Reson Med. – volume: 89 start-page: 2264 year: 2023 end-page: 2269 article-title: Approximate B1+ scaling of the SSFP steady state publication-title: Magn Reson Med. – volume: 33 year: 2020 article-title: Optimal echo times for multi‐gradient echo‐based B field‐mapping publication-title: NMR Biomed. – volume: 90 start-page: 2348 year: 2023 end-page: 2361 article-title: SPARCQ: a new approach for fat fraction mapping using asymmetries in the phase‐cycled balanced SSFP signal profile publication-title: Magn Reson Med. – volume: 87 start-page: 1886 year: 2022 end-page: 1893 article-title: Pure balanced steady‐state free precession imaging (pure bSSFP) publication-title: Magn Reson Med. – volume: 76 start-page: 1574 year: 2016 end-page: 1581 article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts publication-title: Magn Reson Med. – volume: 74 start-page: 1327 year: 2015 end-page: 1335 article-title: How does magnetization transfer influence mc DESPOT results? publication-title: Magn Reson Med. – volume: 53 start-page: 237 year: 2005 end-page: 241 article-title: High‐resolutionT1 andT2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med. – volume: 41 start-page: 4804 year: 2020 end-page: 4814 article-title: Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex Parcellation publication-title: Hum Brain Mapp. |
SSID | ssj0009974 |
Score | 2.480345 |
Snippet | Purpose
To develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$... PurposeTo develop and validate a novel analytical approach simplifying T1$$ {T}_1 $$, T2$$ {T}_2 $$, proton density (PD), and off‐resonance Δf$$ \Delta f $$... To develop and validate a novel analytical approach simplifying T 1 $$ {T}_1 $$ , T 2 $$ {T}_2 $$ , proton density (PD), and off-resonance Δ f $$ \Delta f $$... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1657 |
SubjectTerms | Aliasing aliasing correction analytical solutions Biomarkers brain Cerebrospinal fluid Error reduction Exact solutions Mathematical analysis phase‐cycled bSSFP Precession Proton density (concentration) quantitative MRI Resonance Simulation |
Title | ORACLE: An analytical approach for T1, T2, proton density, and off‐resonance mapping with phase‐cycled balanced steady‐state free precession |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30388 https://www.proquest.com/docview/3161608302 https://www.proquest.com/docview/3148496393 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LaxsxEMdFCKT00qZpS92mRYUeevA6a0mrXTUnkyaEUjdgHMihsOjZQvGu8ePgnvoRQj5iP0lmtF7ncQq5CaRdBKMZ_SWNfiLkk-WZy3LNkzwzIhEZlECFi0TrggcF6wlv8Tby8Ic8PRffLrKLLXLY3oVp-BCbDTf0jBiv0cG1mR_cQEMns0mPI8sE4m-fS-Tmfx3doKOUagjMucA4o0RLFUrZwebLO6rytjaNk8vJc_Kz7VaTU_Knt1yYnv17j9j4yH7vkmdr0UkHzSh5QbZ8tUeeDNfH6ntkJ-aB2vlLcnU2Ghx9P_5CBxXVyCuJW920JY9TkLh03O_SMetSRDzUFXWYAr9YdaG9o3UI__9dwhK-RpCHpxON_IdfFLd76fQ3TJlQbVfQC0cNZlVaKMSBtoKKeLuJhpn38HNvG2TIK3J-cjw-Ok3WzzYkU9BPRcJ5nlnk9Ps8lzqVhROWK8uNlkZpHqRyzqaO9501osCXghVPvQwMpHMI_ZS_JttVXfk3hAYrLTNcay-UQDQikxozSDlLs8B81iH7rQHLte_NSw4iVqbINeuQj5tq8Bo8CtGVr5fYRhQCYo_iHfI5WqucNnSPsuE4sxLsVEY7lcPRMBbePrzpO_KU4UPBMcVnn2wvZkv_HtTLwnyIw_QaqQHuGQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Bb9MwFMefxhCMC4OxicIGRuLAoenS2HHiaZdq2lSgGVLVSbugyHFskFCTqmsP5cRHQHxEPgnvOU0HnBA3S3YiS8_P_vv5-WeA14bHZZxoHiRxIQIRYwlVuAi0TrlTuJ-whm4jZ5dyeCXeXcfXW3Da3oVp-BCbgBt5hp-vycEpIH18Sw2dzqc9TjCTO3DXn8-RJBrfwqOUahjMiaCZRomWKxRGx5tP_9CVv6tTv7xc7MLHtmNNVsmX3nJR9MzXv5iN_9vzR_BwrTvZoBkoj2HLVntwP1ufrO_BPZ8Kam6ewI8P48HZ6PyEDSqmCVnio92shY8zVLls0u-ySdRlRHmoK1ZSFvxi1cX2Jaud-_ntO-7ia2J5WDbVhID4xCjiy2afcdXEarPCXpSsoMRKgwU_1lZY4S84MTe3Fn9uTUMN2Yeri_PJ2TBYv9wQzFBCpQHnSWwI1W-TROpQpqUwXBleaFkozZ1UZWnCkvdLU4iUHgtWPLTSRaieneuH_AC2q7qyT4E5I01UcK2tUILoiJHUlETKozB2kY07cNhaMF-7303OUcfKkNBmHXi1qUbHodMQXdl6SW1EKnD6UbwDb7y58lkD-MgblHOUo51yb6c8G2e-8Ozfm76EneEkG-Wjt5fvn8ODiN4N9hk_h7C9mC_tEYqZRfHCj9lfh5jyNw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbhMxEMdHpYiqFz4KFYECRuLAIZtu1l7vGk5RaVSgKShKpR6QVl5_UAllN0qTQzjxCIhH5EmY8WZT4IS4WbJ3ZWlm7L_t8c8ALwxPbZppHmVpKSKRYglVuIi0zrlXuJ5whm4jj87kybl4d5FebMHr9i5Mw4fYbLhRZITxmgJ8Zv3hNTR0Op_2OLFMbsBNIXGaJEU0vmZHKdUgmDNBA40SLVYoTg43n_4hK38Xp2F2Gd6BT22_mqSSL73louyZr38hG_-z43fh9lp1skHjJvdgy1V7sDNan6vvwa2QCGqu7sOPD-PB0enxKzaomCZgSdjrZi16nKHGZZN-l02SLiPGQ10xSznwi1UX21tWe__z23dcw9dE8nBsqgkA8ZnRfi-bXeKcidVmhb2wrKS0SoOF4GkrrAjXm5ifO4c_d6ZhhjyA8-Hx5OgkWr_bEM1QQOUR51lqCNTvskzqWOZWGK4ML7UsleZeKmtNbHnfmlLk9FSw4rGTPkHt7H0_5vuwXdWVewjMG2mSkmvthBLERkykphRSnsSpT1zagYPWgMU6-K4KjipWxgQ268DzTTWGDZ2F6MrVS2ojcoGDj-IdeBmsVcwavEfRgJyTAu1UBDsVo_EoFB79e9NnsPPxzbA4fXv2_jHsJvRocEj3OYDtxXzpnqCSWZRPg8f-Asi_8OY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ORACLE%3A+An+analytical+approach+for+T1%2C+T2%2C+proton+density%2C+and+off%E2%80%90resonance+mapping+with+phase%E2%80%90cycled+balanced+steady%E2%80%90state+free+precession&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Pl%C3%A4hn%2C+Nils+M+J&rft.au=Safarkhanlo%2C+Yasaman&rft.au=A%C3%A7ikg%C3%B6z%2C+Berk+C&rft.au=Mackowiak%2C+Ad%C3%A8le+L+C&rft.date=2025-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=4&rft.spage=1657&rft.epage=1673&rft_id=info:doi/10.1002%2Fmrm.30388&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |