Vertex-Critical (P5, banner)-Free Graphs

Given two graphs H1 $$H_1$$ and H2 $$H_2$$ , a graph is (H1,H2) $$(H_1,H_2)$$ -free if it contains no induced subgraph isomorphic to H1 $$H_1$$ or H2 $$H_2$$ . Let Pt $$P_t$$ and Ct $$C_t$$ be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a C4 $$C_4$$ by add...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Algorithmics Vol. 11458; pp. 111 - 120
Main Authors Cai, Qingqiong, Huang, Shenwei, Li, Tao, Shi, Yongtang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3030181251
9783030181253
ISSN0302-9743
1611-3349
DOI10.1007/978-3-030-18126-0_10

Cover

More Information
Summary:Given two graphs H1 $$H_1$$ and H2 $$H_2$$ , a graph is (H1,H2) $$(H_1,H_2)$$ -free if it contains no induced subgraph isomorphic to H1 $$H_1$$ or H2 $$H_2$$ . Let Pt $$P_t$$ and Ct $$C_t$$ be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a C4 $$C_4$$ by adding a new vertex and making it adjacent to exactly one vertex of the C4 $$C_4$$ . For a fixed integer k≥1 $$k\ge 1$$ , a graph G is said to be k-vertex-critical if the chromatic number of G is k and the removal of any vertex results in a graph with chromatic number less than k. The study of k-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k-1) $$(k-1)$$ -colorable. In this paper, we show that there are finitely many 6-vertex-critical (P5 $$P_5$$ , banner)-free graphs. This is one of the few results on the finiteness of k-vertex-critical graphs when k>4 $$k>4$$ . To prove our result, we use the celebrated Strong Perfect Graph Theorem and well-known properties on k-vertex-critical graphs in a creative way.
Bibliography:Original Abstract: Given two graphs H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2$$\end{document}, a graph is (H1,H2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H_1,H_2)$$\end{document}-free if it contains no induced subgraph isomorphic to H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1$$\end{document} or H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2$$\end{document}. Let Pt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_t$$\end{document} and Ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_t$$\end{document} be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document} by adding a new vertex and making it adjacent to exactly one vertex of the C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}. For a fixed integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-vertex-critical if the chromatic number of G is k and the removal of any vertex results in a graph with chromatic number less than k. The study of k-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-colorable. In this paper, we show that there are finitely many 6-vertex-critical (P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}, banner)-free graphs. This is one of the few results on the finiteness of k-vertex-critical graphs when k>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>4$$\end{document}. To prove our result, we use the celebrated Strong Perfect Graph Theorem and well-known properties on k-vertex-critical graphs in a creative way.
Original Title: Vertex-Critical (P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}, banner)-Free Graphs
ISBN:3030181251
9783030181253
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-18126-0_10