Vertex-Critical (P5, banner)-Free Graphs
Given two graphs H1 $$H_1$$ and H2 $$H_2$$ , a graph is (H1,H2) $$(H_1,H_2)$$ -free if it contains no induced subgraph isomorphic to H1 $$H_1$$ or H2 $$H_2$$ . Let Pt $$P_t$$ and Ct $$C_t$$ be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a C4 $$C_4$$ by add...
Saved in:
| Published in | Frontiers in Algorithmics Vol. 11458; pp. 111 - 120 |
|---|---|
| Main Authors | , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Online Access | Get full text |
| ISBN | 3030181251 9783030181253 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-030-18126-0_10 |
Cover
| Summary: | Given two graphs H1 $$H_1$$ and H2 $$H_2$$ , a graph is (H1,H2) $$(H_1,H_2)$$ -free if it contains no induced subgraph isomorphic to H1 $$H_1$$ or H2 $$H_2$$ . Let Pt $$P_t$$ and Ct $$C_t$$ be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a C4 $$C_4$$ by adding a new vertex and making it adjacent to exactly one vertex of the C4 $$C_4$$ . For a fixed integer k≥1 $$k\ge 1$$ , a graph G is said to be k-vertex-critical if the chromatic number of G is k and the removal of any vertex results in a graph with chromatic number less than k. The study of k-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k-1) $$(k-1)$$ -colorable. In this paper, we show that there are finitely many 6-vertex-critical (P5 $$P_5$$ , banner)-free graphs. This is one of the few results on the finiteness of k-vertex-critical graphs when k>4 $$k>4$$ . To prove our result, we use the celebrated Strong Perfect Graph Theorem and well-known properties on k-vertex-critical graphs in a creative way. |
|---|---|
| Bibliography: | Original Abstract: Given two graphs H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1$$\end{document} and H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2$$\end{document}, a graph is (H1,H2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H_1,H_2)$$\end{document}-free if it contains no induced subgraph isomorphic to H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_1$$\end{document} or H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2$$\end{document}. Let Pt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_t$$\end{document} and Ct\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_t$$\end{document} be the path and the cycle on t vertices, respectively. A banner is the graph obtained from a C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document} by adding a new vertex and making it adjacent to exactly one vertex of the C4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_4$$\end{document}. For a fixed integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-vertex-critical if the chromatic number of G is k and the removal of any vertex results in a graph with chromatic number less than k. The study of k-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-colorable. In this paper, we show that there are finitely many 6-vertex-critical (P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}, banner)-free graphs. This is one of the few results on the finiteness of k-vertex-critical graphs when k>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>4$$\end{document}. To prove our result, we use the celebrated Strong Perfect Graph Theorem and well-known properties on k-vertex-critical graphs in a creative way. Original Title: Vertex-Critical (P5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_5$$\end{document}, banner)-Free Graphs |
| ISBN: | 3030181251 9783030181253 |
| ISSN: | 0302-9743 1611-3349 |
| DOI: | 10.1007/978-3-030-18126-0_10 |